33 research outputs found
Photon correction quality factors for ionization chambers in an epithermal neutron beam
Photon quality correction factors (kQy) for ionization chamber photon dosimetry in an epithermal neutron beam were determined according to a modified absorbed dose to water formalism which was extended to mixed radiation fields. We have studied two commercially available ionization chambers in the epithermal neutron beam optimized for BNCT at the facility at Studsvik, Sweden. One of the chambers is nominally neutron insensitive; a magnesium-walled detector flushed with pure argon gas (denoted by Mg/Ar). The second chamber has approximately the same sensitivity for neutrons and photons; it is considered a 'tissue equivalent' detector, with A-150 walls flushed with methane-based tissue-equivalent gas (denoted by TE/TE). The kQy-factors in epithermal neutron beams have previously been assumed to be equal to unity or estimated from measurements in clinical accelerator produced photon beams. In this work the kQy-factors have been determined from absorbed dose calculations using cavity theory together with Monte Carlo derived electron fluences obtained with the MCNP4c system for water and PMMA phantoms. The calculated quality correction factors differ substantially from unity, being in the order of 10% for the Mg/Ar detector at shallow phantom depths, and between 2 and 4% for other depths and for the TE/TE chamber
Monte Carlo model of the Studsvik BNCT clinical beam: description and validation
The neutron beam at the Studsvik facility for boron neutron capture therapy (BNCT) and the validation of the related computational model developed for the MCNP-4B Monte Carlo code are presented. Several measurements performed at the epithermal neutron port used for clinical trials have been made in order to validate the Monte Carlo computational model. The good general agreement between the MCNP calculations and the experimental results has provided an adequate check of the calculation procedure. In particular, at the nominal reactor power of 1 MW, the calculated in-air epithermal neutron flux in the energy interval between 0.4 eV-10 keV is 3.24 × 10^9 n cm^-2 s^-1 (±1.2% 1 std. dev.) while the measured value is 3.30 × 10^9 n cm^-2 s^-1 (±5.0% 1 std. dev.). Furthermore, the calculated in-phantom thermal neutron flux, equal to 6.43 × 10^9 n cm^-2 s^-1 (±1.0% 1 std. dev.), and the corresponding measured value of 6.33 × 10^9 n cm^-2 s^-1 (±5.3% 1 std. dev.) agree within their respective uncertainties. The only statistically significant disagreement is a discrepancy of 39% between the MCNP calculations of the in-air photon kerma and the corresponding experimental value. Despite this, a quite acceptable overall in-phantom beam performance was obtained, with a maximum value of the therapeutic ratio (the ratio between the local tumor dose and the maximum healthy tissue dose) equal to 6.7. The described MCNP model of the Studsvik facility has been deemed adequate to evaluate further improvements in the beam design as well as to plan experimental work
Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure
Purpose: The relative biological effectiveness of two epithermal neutron sources, a reactor based source at Studsvik, Sweden, and a proton accelerator-based source in Birmingham, UK, was studied in relation to the proportional absorbed dose distribution as a function of neutron energy. Evidence for any interactions between the effects of biological damage induced by high- and low-linear energy transfer (LET) dose components, in this ‘mixed field’ irradiation, was also examined
Materials and methods: Clonogenic survival in Chinese Hamster-derived V79 cells was used to assess biological effectiveness in this study. Cells were irradiated in suspension at 4°C at depths of 20, 35, 50 and 65 mm in a water phantom. This prevented the repair of sublethal damage, predominantly that produced by both incident and induced γ-rays in the field, over the variable periods of exposure required to irradiate cells with the same total absorbed dose. Cell survival, as a function of the absorbed radiation dose and depth in the phantom, was compared with Monte Carlo N-Particle (MCNP) calculations of the proportional absorbed dose distribution as a function of neutron energy for the two sources.
Results: In terms of the dose-related reduction in clonogenic cell survival, the epithermal neutron source at Studsvik was more biologically effective than the Birmingham source at all depths considered in the phantom. Although the contribution from the high-LET dose component was greater for the Studsvik source at 20 mm depth in the phantom, at greater depths the dose contribution from the high-LET dose component at Studsvik overlap with those for the Birmingham source. However, the most striking difference is in the fast neutron component to the dose of the two sources, neutron energies > 1 MeV were only associated with the Studsvik source. The relative biological effectiveness (RBE) of both sources declined slightly with depth in the phantom, as the total high-LET dose component declined. The maximum source RBE for Studsvik was 2.70 ± 0.50 at 20 mm; reduced to 2.10 ± 0.35 at depths of 50 and 65 mm. The corresponding values for Birmingham were 1.68 ± 0.25 and 1.31 ± 0.19, all values relate only to the surviving fraction of V79 cells at 37%, since RBE values are only applicable to the selected endpoint. Based on a dose reduction factor (DRF) of 1.0 for the total low-LET component to the absorbed dose, the RBE values for the high-LET dose component (fast neutrons and induced protons from the nitrogen capture reaction) was 14.5 and 7.05 for the Studsvik and Birmingham neutron sources, respectively. This is well outside the range of RBE historically reported values for V79 cells for the same level of cell survival for fast neutrons. The calculation of RBE values, based on the proportional absorbed dose distribution as a function of neutron energy, from historical data, and using a RBE of 1.8 for the dose from the nitrogen capture reaction, suggests RBE values for the total high-LET dose component of 3.1–2.8 and 2.5–2.0 for Studsvik and Birmingham, respectively, values again declining with depth in the phantom.
Conclusions: The overall biological effectiveness of the mixed field irradiation from an epithermal neutron sources depends on the composition and quality of the different dose components. The experimentally derived RBE values for the total high-LET dose components in these ‘mixed field’ irradiations are well in excess of historical data for fast neutrons. The difference between the historically expected and the observed RBE values is attributed to the interactions between the damage produced by high- and low-LET radiation