1,547 research outputs found

    Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males

    Get PDF
    Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function

    Ultraviolet Signposts of Resonant Dynamics in the Starburst-Ringed Sab Galaxy, M94 (NGC 4736)

    Get PDF
    M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (FUV-band), Hubble Space Telescope (NUV-band), Kitt Peak 0.9-m telescope (H-alpha, R, and I bands), and Palomar 5-m telescope (B-band), along with spectra from the International Ultraviolet Explorer and Lick 1-m telescopes. The wide-field UIT image shows FUV emission from (a) an elongated nucleus, (b) a diffuse inner disk, where H-alpha is observed in absorption, (c) a bright inner ring of H II regions at the perimeter of the inner disk (R = 48 arcsec. = 1.1 kpc), and (d) two 500-pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R= 130 arcsec. = 2.9 kpc). The HST/FOC image resolves the NUV emission from the nuclear region into a bright core and a faint 20 arcsec. long ``mini-bar'' at a position angle of 30 deg. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates an approximately 10^7 or 10^8 yr-old stellar population from low-level starbirth activity blended with some LINER activity. Analysis of the H-alpha, FUV, NUV, B, R, and I-band emission along with other observed tracers of stars and gas in M94 indicates that most of the star formation is being orchestrated via ring-bar dynamics involving the nuclear mini-bar, inner ring, oval disk, and outer ring. The inner starburst ring and bi-symmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated'' galaxies that have been observed at high redshift. The gravitationally-lensed ``Pretzel Galaxy'' (0024+1654) at a redshift of approximately 1.5 provides an important precedent in this regard.Comment: revised figure 1 (corrected coordinate labels on declination axis); 19 pages of text + 19 figures (jpg files); accepted for publication in A

    The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration

    Get PDF
    Senescence is a form of cell cycle arrest induced by stress such as DNA damage and oncogenes. However, while arrested, senescent cells secrete a variety of proteins collectively known as the senescence-associated secretory phenotype (SASP), which can reinforce the arrest and induce senescence in a paracrine manner. However, the SASP has also been shown to favor embryonic development, wound healing, and even tumor growth, suggesting more complex physiological roles than currently understood. Here we uncover timely new functions of the SASP in promoting a proregenerative response through the induction of cell plasticity and stemness. We show that primary mouse keratinocytes transiently exposed to the SASP exhibit increased expression of stem cell markers and regenerative capacity in vivo. However, prolonged exposure to the SASP causes a subsequent cell-intrinsic senescence arrest to counter the continued regenerative stimuli. Finally, by inducing senescence in single cells in vivo in the liver, we demonstrate that this activates tissue-specific expression of stem cell markers. Together, this work uncovers a primary and beneficial role for the SASP in promoting cell plasticity and tissue regeneration and introduces the concept that transient therapeutic delivery of senescent cells could be harnessed to drive tissue regeneration

    Ablation of Enpp6 results in transient bone hypomineralization

    Get PDF
    C.F. was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) via an Institute Strategic Programme Grant Funding (BB/J004316/1). S.D. was supported through a BBSRC EASTBIO Doctoral Training Partnership studentship award (1803936) and N.M.M. was supported by a Wellcome Trust New Investigator Award (100981/Z/13/Z). S.D. wrote the manuscript. S.D., K.S., S-N.H., and L.A.S. carried out experimental work. W.P.C., R.W. and N.M.M. provided reagents and materials. A.J.S., F.N. and C.F. contributed to conceptualization of the study and experimental design. All authors reviewed and edited the manuscript and approved the final version. All authors state that they have no conflicts of interest.Biomineralization is a fundamental process key to the development of the skeleton. The phosphatase orphan phosphatase 1 (PHOSPHO1), which likely functions within extracellular matrix vesicles, has emerged as a critical regulator of biomineralization. The biochemical pathways which generate intravesicular PHOSPHO1 substrates are however currently unknown. We hypothesized that the enzyme ectonucleotide pyrophosphatase/phosphodiesterase (ENPP6) is an upstream source of PHOSPHO1 substrate. To test this, we characterized skeletal phenotypes of mice homozygous for a targeted deletion of Enpp6 (Enpp6‒/‒). Micro-computed tomography of the trabecular compartment revealed transient hypomineralization in Enpp6‒/‒ tibiae (p 0.01) and osteoid surface (p < 0.05) which recovered by 12 weeks but was not accompanied by changes in osteoblast or osteoclast number. This study is the first to characterize the skeletal phenotype of Enpp6‒/‒ mice, revealing transient hypomineralization in young animals compared to wild-type controls. These data suggest that ENPP6 is important for bone mineralization and may function upstream of PHOSPHO1 as a novel means of generating its substrates inside matrix vesicles.Publisher PDFPeer reviewe

    Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest

    Get PDF
    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells

    The Ultraviolet Imaging Telescope: Instrument and Data Characteristics

    Get PDF
    The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro observatory on the Space Shuttle Columbia in December 1990 and again on the Space Shuttle Endeavor in March 1995. Ultraviolet (1200-3300 Angstroms) images of a variety of astronomical objects, with a 40 arcmin field of view and a resolution of about 3 arcsec, were recorded on photographic film. The data recorded during the first flight are available to the astronomical community through the National Space Science Data Center (NSSDC); the data recorded during the second flight will soon be available as well. This paper discusses in detail the design, operation, data reduction, and calibration of UIT, providing the user of the data with information for understanding and using the data. It also provides guidelines for analyzing other astronomical imagery made with image intensifiers and photographic film.Comment: 44 pages, LaTeX, AAS preprint style and EPSF macros, accepted by PAS

    Ernst Freund as Precursor of the Rational Study of Corporate Law

    Get PDF
    Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe

    An Ultraviolet and Near-Infrared View of NGC 4214: A Starbursting Core Embedded in a Low Surface Brightness Disk

    Get PDF
    During the Astro-2 Spacelab mission in 1995 March, the Ultraviolet Imaging Telescope (UIT) obtained far-UV (λ = 1500 A) imagery of the nearby Sm/Im galaxy NGC 4214. The UIT images have a spatial resolution of ~3'' and a limiting surface brightness, μ1500 > 25 mag arcsec-2, permitting detailed investigation of the intensity and spatial distribution of the young, high-mass stellar component. These data provide the first far-UV imagery covering the full spatial extent of NGC 4214. Comparison with a corresponding I-band image reveals the presence of a starbursting core embedded in an extensive low surface brightness disk. In the far-UV (FUV), NGC 4214 is resolved into several components: a luminous, central knot; an inner region (r 2.5 kpc) with ~15 resolved sources embedded in bright, diffuse emission; and a population of fainter knots extending to the edge of the optically defined disk (r ≈ 5 kpc). The FUV light, which traces recent massive star formation, is observed to be more centrally concentrated than the I-band light, which traces the global stellar population. The FUV radial light profile is remarkably well represented by an R1/4 law, providing evidence that the centrally concentrated massive star formation in NGC 4214 is the result of an interaction, possibly a tidal encounter, with a dwarf companion(s). The brightest FUV source produces ~8% of the global FUV luminosity. This unresolved source, corresponding to the Wolf-Rayet knot described by Sargent & Filippenko, is located at the center of the FUV light distribution, giving NGC 4214 an active galactic nucleus-like morphology. Another strong source is present in the I band, located 19'' west, 10'' north of the central starburst knot, with no FUV counterpart. The I-band source may be the previously unrecognized nucleus of NGC 4214 or an evolved star cluster with an age greater than ~200 Myr. The global star formation rate derived from the total FUV flux is consistent with rates derived using data at other wavelengths and lends support to the scenario of roughly constant star formation during the last few hundred million years at a level significantly enhanced relative to the lifetime averaged star formation rate. The hybrid disk/starburst-irregular morphology evident in NGC 4214 emphasizes the danger of classifying galaxies based on their high surface brightness components at any particular wavelength
    • …
    corecore