26 research outputs found
Return-to-activity after anatomical reconstruction of acute high-grade acromioclavicular separation
BACKGROUND: To evaluate return-to-activity (RtA) after anatomical reconstruction of acute high-grade acromioclavicular joint (ACJ) separation. METHODS: A total of 42 patients with anatomical reconstruction of acute high-grade ACJ-separation (Rockwood Type V) were surveyed to determine RtA at a mean 31 months follow-up (f-u). Sports disciplines, intensity, level of competition, participation in overhead and/or contact sports, as well as activity scales (DASH-Sport-Module, Tegner Activity Scale) were evaluated. Functional outcome evaluation included Constant score and QuickDASH. RESULTS: All patients (42/42) participated in sporting activities at f-u. Neither participation in overhead/contact sports, nor level of activity declined significantly (n.s.). 62 % (n = 26) of patients reported subjective sports specific ACJ integrity to be at least the same as prior to the trauma. Sporting intensity (hours/week: 7.3 h to 5.4 h, p = .004) and level of competition (p = .02) were reduced. If activity changed, in 50 % other reasons but clinical symptoms/impairment were named for modified behavior. QuickDASH (mean 6, range 0–54, SD 11) and DASH-Sport-Module (mean 6, range 0–56, SD 13) revealed only minor disabilities at f-u. Over time Constant score improved significant to an excellent score (mean 94, range 86–100, SD 4; p < .001). Functional outcome was not correlated with RtA (n.s.). CONCLUSION: All patients participated in sporting activities after anatomical reconstruction of high-grade (Rockwood Type V) ACJ-separation. With a high functional outcome there was no significant change in activity level (Tegner) and participation in overhead and/or contact sports observed. There was no correlation between functional outcome and RtA. Limiting, there were alterations in time spent for sporting activities and level of competition observed. But in 50 % those were not related to ACJ symptoms/impairment. Unrelated to successful re-established integrity and function of the ACJ it should be considered that patients decided not return-to-activity but are very content with the procedure
Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic
Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07 − 3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024 – 0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic
Trimming of graphs, with application to point labeling
For t>0 and g=0, a vertex-weighted graph of total weight W is (t,g)-trimmable if it contains a vertex-induced subgraph of total weight at least (1-1/t)W and with no simple path of more than g edges. A family of graphs is trimmable if for every constant t>0, there is a constant g=0 such that every vertex-weighted graph in the family is (t,g)-trimmable. We show that every family of graphs of bounded domino treewidth is trimmable. This implies that every family of graphs of bounded degree is trimmable if the graphs in the family have bounded treewidth or are planar. We also show that every family of directed graphs of bounded layer bandwidth (a less restrictive condition than bounded directed bandwidth) is trimmable. As an application of these results, we derive polynomial-time approximation schemes for various forms of the problem of labeling a subset of given weighted point features with nonoverlapping sliding axes-parallel rectangular labels so as to maximize the total weight of the labeled features, provided that the ratios of label heights or the ratios of label lengths are bounded by a constant. This settles one of the last major open questions in the theory of map labeling