25 research outputs found

    Coated Controlled-Release Fertilizers: Potential Solution for Sustainable Agriculture

    Get PDF
    The use of fertilizer in the agricultural field is essential for plant growth but an excess amount of pure chemical contents in fertilizers becomes harmful to every living being. To reduce this chemical exposure, the use of materials coated with Controlled Release Fertilizers (CRFs) are being used. The coating of materials outside the fertilizer does not allow the chemicals to spread completely within one application of fertilizer but its spread can be extended as will be done in 2-3 applications of fertilizer. The features of the undercoating material are thus vital to attain this delayed or slow release of the nutrients present in the fertilizer. The longevity of CRFs depends upon the width of the material coating surrounding the fertilizer, temperature, and moisture. The review focuses on the consequences of conventional fertilizers, the need to control the release of fertilizers and types of coatings used, and their application in sustainable agriculture

    Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    Get PDF
    BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42)) peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42) in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42). Arginine increases the solubility of Abeta(1-42) peptide in aqueous medium. It decreases the aggregation of Abeta(1-42) as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation

    Purification and characterization of a native zinc-binding high molecular weight multiprotein complex from human seminal plasma

    No full text
    The seminal plasma comprises secretions from various accessory sex glands. During fertilization spermatozoa undergo complex sequences of precisely timed events that are regulated by the activation of different intracellular signaling pathways. The precision and efficacy of these pathways are often influenced by the assembly and interactions of multiprotein complexes, thereby directing the flow of regulatory information. Our knowledge about these protein complexes present in human seminal plasma (HuSP) is limited. Here we report the identification and characterization of a native high molecular weight zinc-binding multiprotein complex from HuSP by utilizing 2-DE followed by MS. Twenty-six proteins representing isoforms and/or fragments of 11 different proteins were found to be assembled in this complex. Prostate-specific antigen, zinc α2-glycoprotein, prostatic acid phosphatase, and prolactin inducible protein were the major proteins of this complex. Dynamic light scattering experiments revealed changes in aggregation pattern accompanied with deviation from physiological pH and in presence of SDS. However, no significant changes were observed in the presence of physiological ligands such as zinc and fructose. The present study will be useful and contribute to guide the future studies performed for elucidation of biological significance of this native complex in HuSP

    The Competence of 7,8-Diacetoxy-4-Methylcoumarinand other Polyphenolic Acetates in Mitigating the Oxidative Stress and their Role in Angiogenesis.

    No full text
    The potential role of polyphenolic acetate (PA) in causing diverse biological and pharmacological actions has been well studied in our laboratory. Our investigations, for the first time, established the role of calreticulin transacetylase (CRTAase) in catalyzing the acetylation of nitric oxide synthase (NOS) by Pas leading to robust activation of NOS. 7, 8-Diacetoxy-4-methylcoumarin (DAMC) and other acetoxycoumarins augmented the expression of thioredoxin (TRX) and vascular endothelial growth factor (VEGF) in human peripheral blood mononuclear cells (PBMCs). These findings substantiated our earlier observations that DAMC was a superb inducer of angiogenesis. The enhanced expression of thioredoxin reductase (TRXR) and diminished expression of thioredoxin interacting protein (TRXIP) leading to increased expression and activity of TRX in PBMCs due to the action of DAMC was revealed by real time RT-PCR analysis. The possible activation of TRX due to acetylation was confirmed by the fact that TRX activity of PBMCs was enhanced by variousacetoxycoumarins in tune with their affinities to CRTAase as substrates. DAMC caused enhanced production of NO by way of acetylation of NOS as mentioned above and thereby acted as an inducer of VEGF. Real time RT-PCR and VEGF ELISA results also revealed the overexpression of TRX. DAMC and other PAs were found to reduce the oxidative stress in cells as proved by significant reduction of intracellular ROS levels. Thus, the crucial role of TRX in DAMC-induced angiogenesis with the involvement of VEGF was established
    corecore