64 research outputs found

    Clinical review of retinotopy

    Get PDF
    Two observations made 29 years apart are the cornerstones of this review on the contributions of Dr Gordon T. Plant to understanding pathology affecting the optic nerve. The first observation laid the anatomical basis in 1990 for the interpretation of optical coherence tomography (OCT) findings in 2009. Retinal OCT offers clinicians detailed in vivo structural imaging of individual retinal layers. This has led to novel observations which were impossible to make using ophthalmoscopy. The technique also helps to re-introduce the anatomically grounded concept of retinotopy to clinical practise. This review employs illustrations of the anatomical basis for retinotopy through detailed translational histological studies and multimodal brain-eye imaging studies. The paths of the prelaminar and postlaminar axons forming the optic nerve and their postsynaptic path from the dorsal lateral geniculate nucleus to the primary visual cortex in humans are described. With the mapped neuroanatomy in mind we use OCT-MRI pairings to discuss the patterns of neurodegeneration in eye and brain that are a consequence of the hard wired retinotopy: anterograde and retrograde axonal degeneration which can, within the visual system, propagate trans-synaptically. The technical advances of OCT and MRI for the first time enable us to trace axonal degeneration through the entire visual system at spectacular resolution. In conclusion, the neuroanatomical insights provided by the combination of OCT and MRI allows us to separate incidental findings from sinister pathology and provides new opportunities to tailor and monitor novel neuroprotective strategies

    The Cholangiocyte Glycocalyx Stabilizes the 'Biliary HCO3 Umbrella': An Integrated Line of Defense against Toxic Bile Acids

    Get PDF
    BACKGROUND Destruction of cholangiocytes is the hallmark of chronic cholangiopathies such as primary biliary cirrhosis. Under physiologic conditions, cholangiocytes display a striking resistance to the high, millimolar concentrations of toxic bile salts present in bile. We recently showed that a 'biliary HCO3(-) umbrella', i.e. apical cholangiocellular HCO3(-) secretion, prevents cholangiotoxicity of bile acids, and speculated on a role for extracellular membrane-bound glycans in the stabilization of this protective layer. This paper summarizes published and thus far unpublished evidence supporting the role of the glycocalyx in stabilizing the 'biliary HCO3(-) umbrella' and thus preventing cholangiotoxicity of bile acids. KEY MESSAGES The apical glycocalyx of a human cholangiocyte cell line and mouse liver sections were visualized by electron microscopy. FACS analysis was used to characterize the surface glycan profile of cultured human cholangiocytes. Using enzymatic digestion with neuraminidase the cholangiocyte glycocalyx was desialylated to test its protective function. Using lectin assays, we demonstrated that the main N-glycans in human and mouse cholangiocytes were sialylated biantennary structures, accompanied by high expression of the H-antigen (\textgreeka1-2 fucose). Apical neuraminidase treatment induced desialylation without affecting cell viability, but lowered cholangiocellular resistance to bile acid-induced toxicity: both glycochenodeoxycholate and chenodeoxycholate (pKa \geq4), but not taurochenodeoxycholate (pKa \textless2), displayed cholangiotoxic effects after desialylation. A 24-hour reconstitution period allowed cholangiocytes to recover to a pretreatment bile salt susceptibility pattern. CONCLUSION Experimental evidence indicates that an apical cholangiocyte glycocalyx with glycosylated mucins and other glycan-bearing membrane glycoproteins stabilizes the 'biliary HCO3(-) umbrella', thus aiding in the protection of human cholangiocytes against bile acid toxicity

    Biliary Bicarbonate Secretion Constitutes a Protective Mechanism against Bile Acid-Induced Injury in Man

    Get PDF
    Background: Cholangiocytes expose a striking resistance against bile acids: while other cell types, such as hepatocytes, are susceptible to bile acid-induced toxicity and apoptosis already at micromolar concentrations, cholangiocytes are continuously exposed to millimolar concentrations as present in bile. We present a hypothesis suggesting that biliary secretion of HCO(3)(-) in man serves to protect cholangiocytes against bile acid-induced damage by fostering the deprotonation of apolar bile acids to more polar bile salts. Here, we tested if bile acid-induced toxicity is pH-dependent and if anion exchanger 2 (AE2) protects against bile acid-induced damage. Methods: A human cholangiocyte cell line was exposed to chenodeoxycholate (CDC), or its glycine conjugate, from 0.5 mM to 2.0 mM at pH 7.4, 7.1, 6.7 or 6.4, or after knockdown of AE2. Cell viability and apoptosis were determined by WST and caspase-3/-7 assays, respectively. Results: Glycochenodeoxycholate (GCDC) uptake in cholangiocytes is pH-dependent. Furthermore, CDC and GCDC (pK(a) 4-5) induce cholangiocyte toxicity in a pH-dependent manner: 0.5 mM CDC and 1 mM GCDC at pH 7.4 had no effect on cell viability, but at pH 6.4 decreased viability by >80% and increased caspase activity almost 10- and 30-fold, respectively. Acidification alone had no effect. AE2 knockdown led to 3- and 2-fold enhanced apoptosis induced by 0.75 mM CDC or 2 mM GCDC at pH 7.4. Discussion: These data support our hypothesis of a biliary HCO(3)(-) umbrella serving to protect human cholangiocytes against bile acid-induced injury. AE2 is a key contributor to this protective mechanism. The development and progression of cholangiopathies, such as primary biliary cirrhosis, may be a consequence of genetic and acquired functional defects of genes involved in maintaining the biliary HCO(3)(-) umbrella. Copyright (C) 2011 S. Karger AG, Base

    Coherence-powered work exchanges between a solid-state qubit and light fields

    Full text link
    How does quantum coherence impact energy exchanges between quantum systems? This key question of quantum thermodynamics is also of prime importance for the energy management of emerging technologies based on quantum coherence. Pioneering theoretical frameworks have been proposed to describe the role of coherence in the energetic exchanges between a qubit and the electromagnetic field. Here, we experimentally study the work transferred during the spontaneous emission of a solid-state qubit into a reservoir of modes of the electromagnetic field, a step that energetically corresponds to the charging of a quantum battery. We show that the amount of transferred work is proportional to the initial quantum coherence of the qubit, and is reduced at higher temperatures. In a second step, we {study the discharge of the battery and its energy transfer} to a classical, i.e., laser field using homodyne-type measurements. Our research shows that the amount of energy and work transferred to the laser field is controlled by the relative classical optical phase between the two fields, the quantum purity of the charged battery field as theoretically predicted, as well as long-term fluctuations in the qubit solid-state environment. Our study lays the groundwork for the energetics of quantum light generation and optical quantum interferences - two key processes that are at the core of most light-based quantum technologies

    Molecular Targets for the Treatment of Fibrosing Cholangiopathies

    No full text
    Emerging pathophysiologic insights are leading to novel approaches to treating fibrosing cholangiopathies. The current treatment, using ursodeoxycholic acid (UDCA), may slow the progression of some chronic cholangiopathies but cannot heal them. Apart from immunosuppressive interventions aimed at minimizing immune-mediated damage, the use of specific modifiers of hepatobiliary secretory and cytoprotective mechanisms may eventually give rise to a new class of disease-modifying anticholangiofibrotic drug

    The eye as a window to inborn errors of metabolism

    No full text
    Ocular manifestations in inborn errors of metabolism occur in many diseases and may be associated with any part of all eye components. In a minority of diseases it is possible to attribute the eye symptoms to a single hereditary pathogenetic mechanism. More often the aetiological relationship of the ocular defects to the metabolic disease is unknown. Diverse pathogenetic mechanisms may act via a common pathological pathway inducing ocular damage. The occurrence of eye abnormalities in metabolic disorders suggests that they are associated with direct toxic actions, errors of synthetic pathways or deficient energy metabolism. In this review, metabolic disorders with major abnormalities in the cornea, lens, retina and optic nerve are presented. In all cases, an appropriate combined approach by the ophthalmologist, paediatrician/neurologist, geneticist and clinical biochemist is the only way to diagnostic succes

    The biliary HCO(3) (-) umbrella: A unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies

    No full text
    This review focuses on the hypothesis that biliary HCO(3) (-) secretion in humans serves to maintain an alkaline pH near the apical surface of hepatocytes and cholangiocytes to prevent the uncontrolled membrane permeation of protonated glycine-conjugated bile acids. Functional impairment of this biliary HCO(3) (-) umbrella or its regulation may lead to enhanced vulnerability of cholangiocytes and periportal hepatocytes toward the attack of apolar hydrophobic bile acids. An intact interplay of hepatocellular and cholangiocellular adenosine triphosphate (ATP) secretion, ATP/P2Y- and bile salt/TGR5-mediated Cl(-)/ HCO(3) (-) exchange and HCO(3) (-) secretion, and alkaline phosphatase-mediated ATP breakdown may guarantee a stable biliary HCO(3) (-) umbrella under physiological conditions. Genetic and acquired functional defects leading to destabilization of the biliary HCO(3) (-) umbrella may contribute to development and progression of various forms of fibrosing/sclerosing cholangitis. (HEPATOLOGY 2010;
    corecore