104 research outputs found

    Hidden Translation and Translating Coset in Quantum Computing

    Get PDF
    We give efficient quantum algorithms for the problems of Hidden Translation and Hidden Subgroup in a large class of non-abelian solvable groups including solvable groups of constant exponent and of constant length derived series. Our algorithms are recursive. For the base case, we solve efficiently Hidden Translation in Zpn\Z_{p}^{n}, whenever pp is a fixed prime. For the induction step, we introduce the problem Translating Coset generalizing both Hidden Translation and Hidden Subgroup, and prove a powerful self-reducibility result: Translating Coset in a finite solvable group GG is reducible to instances of Translating Coset in G/NG/N and NN, for appropriate normal subgroups NN of GG. Our self-reducibility framework combined with Kuperberg's subexponential quantum algorithm for solving Hidden Translation in any abelian group, leads to subexponential quantum algorithms for Hidden Translation and Hidden Subgroup in any solvable group.Comment: Journal version: change of title and several minor update

    Discrete-time quantum walks: continuous limit and symmetries

    Full text link
    The continuous limit of one dimensional discrete-time quantum walks with time- and space-dependent coefficients is investigated. A given quantum walk does not generally admit a continuous limit but some families (1-jets) of quantum walks do. All families (1-jets) admitting a continuous limit are identified. The continuous limit is described by a Dirac-like equation or, alternately, a couple of Klein-Gordon equations. Variational principles leading to these equations are also discussed, together with local invariance properties

    Mixing Times in Quantum Walks on Two-Dimensional Grids

    Full text link
    Mixing properties of discrete-time quantum walks on two-dimensional grids with torus-like boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.Comment: 11 page

    Single-qubit unitary gates by graph scattering

    Full text link
    We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9n=9 vertices for which the scattering implements a single-qubit gate. As nn increases, the number of new unitary operations increases exponentially, and for n>6n>6 the majority correspond to rotations about axes distributed roughly uniformly across the Bloch sphere. Rotations by both rational and irrational multiples of π\pi are found.Comment: 8 pages, 7 figure

    Generating reversible circuits from higher-order functional programs

    Full text link
    Boolean reversible circuits are boolean circuits made of reversible elementary gates. Despite their constrained form, they can simulate any boolean function. The synthesis and validation of a reversible circuit simulating a given function is a difficult problem. In 1973, Bennett proposed to generate reversible circuits from traces of execution of Turing machines. In this paper, we propose a novel presentation of this approach, adapted to higher-order programs. Starting with a PCF-like language, we use a monadic representation of the trace of execution to turn a regular boolean program into a circuit-generating code. We show that a circuit traced out of a program computes the same boolean function as the original program. This technique has been successfully applied to generate large oracles with the quantum programming language Quipper.Comment: 21 pages. A shorter preprint has been accepted for publication in the Proceedings of Reversible Computation 2016. The final publication is available at http://link.springer.co

    Optimal phase estimation in quantum networks

    Full text link
    We address the problem of estimating the phase phi given N copies of the phase rotation u(phi) within an array of quantum operations in finite dimensions. We first consider the special case where the array consists of an arbitrary input state followed by any arrangement of the N phase rotations, and ending with a POVM. We optimise the POVM for a given input state and fixed arrangement. Then we also optimise the input state for some specific cost functions. In all cases, the optimal POVM is equivalent to a quantum Fourier transform in an appropriate basis. Examples and applications are given.Comment: 9 pages, 2 figures; this is an extended version of arXiv:quant-ph/0609160. v2: minor corrections in reference

    Almost uniform sampling via quantum walks

    Get PDF
    Many classical randomized algorithms (e.g., approximation algorithms for #P-complete problems) utilize the following random walk algorithm for {\em almost uniform sampling} from a state space SS of cardinality NN: run a symmetric ergodic Markov chain PP on SS for long enough to obtain a random state from within ϵ\epsilon total variation distance of the uniform distribution over SS. The running time of this algorithm, the so-called {\em mixing time} of PP, is O(δ1(logN+logϵ1))O(\delta^{-1} (\log N + \log \epsilon^{-1})), where δ\delta is the spectral gap of PP. We present a natural quantum version of this algorithm based on repeated measurements of the {\em quantum walk} Ut=eiPtU_t = e^{-iPt}. We show that it samples almost uniformly from SS with logarithmic dependence on ϵ1\epsilon^{-1} just as the classical walk PP does; previously, no such quantum walk algorithm was known. We then outline a framework for analyzing its running time and formulate two plausible conjectures which together would imply that it runs in time O(δ1/2logNlogϵ1)O(\delta^{-1/2} \log N \log \epsilon^{-1}) when PP is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.Comment: 13 pages; v2 added NSF grant info; v3 incorporated feedbac

    Pseudo-Hermitian continuous-time quantum walks

    Full text link
    In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.Comment: 13 page, 7 figure

    Recurrence of biased quantum walks on a line

    Full text link
    The Polya number of a classical random walk on a regular lattice is known to depend solely on the dimension of the lattice. For one and two dimensions it equals one, meaning unit probability to return to the origin. This result is extremely sensitive to the directional symmetry, any deviation from the equal probability to travel in each direction results in a change of the character of the walk from recurrent to transient. Applying our definition of the Polya number to quantum walks on a line we show that the recurrence character of quantum walks is more stable against bias. We determine the range of parameters for which biased quantum walks remain recurrent. We find that there exist genuine biased quantum walks which are recurrent.Comment: Journal reference added, minor corrections in the tex
    corecore