15 research outputs found

    We are going to the Moon – this time to stay!

    No full text

    Wave Propagation in Unsaturated Poroelastic Media: Boundary Integral Formulation and Three-dimensional Fundamental Solution

    Get PDF
    Abstract This paper aims at obtaining boundary integral formulations as well as three dimensional (3D) fundamental solutions for unsaturated soils under dynamic loadings for the first time. The boundary integral equations are derived via the use of the weighted residuals method in a way that permits an easy discretization and implementation in a Boundary Element code. Also, the associated 3D fundamental solutions for such deformable porous medium are derived in Laplace transform domain using the method of Hörmander. The derived results are verified analytically by comparison with the previously introduced corresponding fundamental solutions in elastodynamic limiting case. These solutions can be used, afterwards, in a convolution quadrature method (CQM)-based boundary element formulations in order to model the wave propagation phenomena in such media in time domain

    Site-specific Spectral Response of Seismic Movement due to Geometrical and Geotechnical Characteristics of Sites

    Get PDF
    Copyright © 2009 Elsevier Ltd.DOI: dx.doi.org/10.1016/j.soildyn.2008.01.015It is well-known that the response of a site to a seismic solicitation depends on local topographical and geotechnical characteristics. Many aspects of seismic site effect still need to be studied in more detail and they can be incorporated in the seismic norms after quantification. The purpose of this paper is to contribute to establishment of a simple method to include complex site effects in a building code. Horizontal ground movements in various points of two-dimensional (2D) irregular configurations subjected to synthetic SV waves of vertical incidence are calculated. The parametric studies are achieved by means of HYBRID program combining finite elements in the near field and boundary elements in the far field (FEM/BEM). The results are shown in the form of pseudo-acceleration response spectra. For the empty valleys, we can classify the spectral response according to a unique geometric criterion: the “surface/angle” ratio, where surface is the area of the valley opening, and angle denotes the angle between the slope and horizontal line in the above corner. To assess the influence of the 2D effect on the spectral response of filled valleys, the response of alluvial basins are compared with the response of one-dimensional columns of soil. Finally, an offset criterion is proposed to choose a relevant computation method for the spectral acceleration at the surface of alluvial basins

    A MULTI-SCALE SEISMIC RESPONSE OF TWO-DIMENSIONAL SEDIMENTARY VALLEYS DUE TO THE COMBINED EFFECTS OF TOPOGRAPHY AND GEOLOGY

    Get PDF
    It is well-known that the response of a site to seismic excitation depends on the local topographical and geological conditions. The current building codes already take into account unidimensional site effects butignore complex site effects due to two-dimensional irregular configurations. The aim of this work is to contribute to the establishment of a simple predictive method to estimate site effects. The horizontal ground movements at the surface of sedimentary valleys subjected to SV waves with vertical incidence are calculated by using the HYBRID program, combining finite elements in the near field and boundary elements in the far field (FEM/BEM). A parametric study is conducted to examine the combined effects of topography and geology on the amplification of the response spectrum at various points across the valley. The influence of different parameters is considered, such as filling ratios (from empty to full valleys), impedanc

    Recent Advances in Nature-Inspired Solutions for Ground Engineering (NiSE)

    No full text
    The ground is a natural grand system; it is composed of myriad constituents that aggregate to form several geologic and biogenic systems. These systems operate independently and interplay harmoniously via important networked structures over multiple spatial and temporal scales. This paper presents arguments and derivations couched by the authors, to first give a better understanding of these intertwined networked structures, and then to give an insight of why and how these can be imitated to develop a new generation of nature-symbiotic ground engineering techniques. The paper draws on numerous recent advances made by the authors, and others, in imitating forms (e.g. synthetic fibres that imitate plant roots), materials (e.g. living composite materials, or living soil that imitate fungi and microbes), generative processes (e.g. managed decomposition of construction rubble to mimic weathering of aragonites to calcites), and functions (e.g. recreating the self-healing, self-producing, and self-forming capacity of natural systems). Advances are reported in three categories of Materials, Models, and Methods (3Ms). A novel value-based appraisal tool is also presented, providing a means to vet the effectiveness of 3Ms as standalone units or in combinations
    corecore