2,448 research outputs found

    Particle tracking in the CALET experiment

    Get PDF
    The Calorimetric Electron Telescope (CALET) is a space mission installed on the Exposed Fa- cility of the Japanese Experiment Module (JEM-EF) of the International Space Station (ISS) in August 2015 and collecting data since October 2015. In addition to high precision measure- ments of the electron spectrum up to TeV scale, CALET will also investigate the mechanism of cosmic-ray (CR) acceleration and propagation in the Galaxy, by performing direct measurements of the energy spectra and elemental composition of CR nuclei from H to Fe, and the abundance of trans-iron elements up to about Z=40. The instrument consists of two layers of segmented plas- tic scintillators to identify the particle charge, a thin (3 radiation lengths) tungsten-scintillating fiber calorimeter providing accurate particle tracking, and a thick (27 radiation lengths) calorime- ter made of lead-tungstate crystal logs. In this paper we will describe an original reconstruction method of the primary particle direction based on a combinatorial Kalman filter algorithm. This method exploits the fine granularity and imaging capability of the IMC and provides robust track finding and fitting, allowing to identify the incident CR track in a large amount of shower par- ticle tracks backscattered from the calorimeter. The track fitting algorithm has been extensively validated and tuned with simulated data. Its performance (angular resolution, impact point res- olution, tracking efficiency) for electrons and nuclei will be discussed and comparisons between flight data and simulations will be shown

    Thermal melting of density waves on the square lattice

    Full text link
    We present the theory of the effect of thermal fluctuations on commensurate "p x p" density wave ordering on the square lattice (p >= 3, integer). For the case in which this order is lost by a second order transition, we argue that the adjacent state is generically an incommensurate striped state, with commensurate p-periodic long range order along one direction, and incommensurate quasi-long-range order along the orthogonal direction. We also present the routes by which the fully disordered high temperature state can be reached. For p=4, and at special commensurate densities, the "4 x 4" commensurate state can melt directly into the disordered state via a self-dual critical point with non-universal exponents.Comment: 12 pages, 5 figure

    Low temperature specific heat and possible gap to magnetic excitations in the Heisenberg pyrochlore antiferromagnet Gd2Sn207

    Full text link
    The Gd2Sn2O7 pyrochlore Heisenberg antiferromagnet displays a phase transition to a four sublattice Neel ordered state at a temperature near 1 K. Despite the seemingly conventional nature of the ordered state, the specific heat has been found to be described in the temperature range 350-800 mK by an anomalous T-squared power law. A similar temperature dependence has also been reported for Gd2Ti2O7, another pyrochlore Heisenberg material. Such anomalous T-squared behavior in Cv has been argued to be correlated to an unusual energy-dependence of the density of states which also seemingly manifests itself in low-temperature spin fluctuations found in muon spin relaxation experiments. In this paper, we report calculations of Cv that consider spin wave like excitations out of the Neel order observed in Gd2Sn2O7 and argue that the parametric T-squared behavior does not reflect the true low-energy excitations of Gd2Sn2O7. Rather, we find that the low-energy excitations of this material are antiferromagnetic magnons gapped by single-ion and dipolar anisotropy effects, and that the lowest temperature of 350 mK considered in previous specific heat measurements accidentally happens to coincide with a crossover temperature below which magnons become thermally activated and Cv takes an exponential form. We argue that further specific heat measurements that extend down to at least 100 mK are required in order to ascribe an unconventional description of magnetic excitations out of the ground state of Gd2Sn2O7 or to invalidate the standard picture of gapped excitations proposed herein.Comment: 12 pages, 13 figures; shortened introduction and added 1 figur

    The CALET mission on the International Space Station

    Get PDF
    The CALorimetric Electron Telescope (CALET) is an astroparticle physics experiment currently under preparation to be installed on the International Space Station. Its main scientific goal is to search for possible clues of the presence of astrophysical sources of high-energy electrons nearby the Earth or signatures of dark matter, by measuring accurately the electron spectrum up to several TeV. CALET will also investigate the mechanism of cosmic-ray (CR) acceleration and propagation in the Galaxy, by performing direct measurements of the energy spectra and elemental composition of CR nuclei from H to Fe up to several hundreds of TeV, and the abundance of trans-iron elements at few GeV/amu up to about Z=40. The instrument consists of two layers of segmented plastic scintillators to identify the particle charge, a thin tungsten- scintillating fiber calorimeter providing accurate particle tracking, and a thick crystal calorimeter to measure the energy of CRs with excellent resolution and electron/hadron separation up to the multi-TeV scale. In this paper, we will review the status of the CALET mission, the instrument configuration and its performance, and the expected measurements of the different components of the cosmic radiation in 5 years of observations

    Evidence for gapped spin-wave excitations in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from low-temperature specific heat measurements

    Full text link
    We have measured the low-temperature specific heat of the geometrically frustrated pyrochlore Heisenberg antiferromagnet Gd2Sn2O7 in zero magnetic field. The specific heat is found to drop exponentially below approximately 350 mK. This provides evidence for a gapped spin-wave spectrum due to an anisotropy resulting from single ion effects and long-range dipolar interactions. The data are well fitted by linear spin-wave theory, ruling out unconventional low energy magnetic excitations in this system, and allowing a determination of the pertinent exchange interactions in this material

    Quantum spin fluctuations in the dipolar Heisenberg-like rare earth pyrochlores

    Full text link
    The magnetic pyrochlore oxide materials of general chemical formula R2Ti2O7 and R2Sn2O7 (R = rare earth) display a host of interesting physical behaviours depending on the flavour of rare earth ion. These properties depend on the value of the total magnetic moment, the crystal field interactions at each rare earth site and the complex interplay between magnetic exchange and long-range dipole-dipole interactions. This work focuses on the low temperature physics of the dipolar isotropic frustrated antiferromagnetic pyrochlore materials. Candidate magnetic ground states are numerically determined at zero temperature and the role of quantum spin fluctuations around these states are studied using a Holstein-Primakoff spin wave expansion to order 1/S. The results indicate the strong stability of the proposed classical ground states against quantum fluctuations. The inclusion of long range dipole interactions causes a restoration of symmetry and a suppression of the observed anisotropy gap leading to an increase in quantum fluctuations in the ground state when compared to a model with truncated dipole interactions. The system retains most of its classical character and there is little deviation from the fully ordered moment at zero temperature.Comment: Latex2e, 18 pages, 4 figures, IOP forma
    corecore