45,727 research outputs found
Generation of widely tunable picosecond pulses with large SMSR by externally injecting a gain-switched dual laser source
The authors demonstrate a procedure of generating picosecond optical pulses that are tunable over a wide wavelength range (65 nm) and have very high spectral purity side-mode suppression ratio [(SMSR)>60 dB]. The large tuning range is obtained by employing external injection into a gain-switched source containing two Fabry-Pe/spl acute/rot lasers. The use of a widely tunable Bragg grating at the output improves the SMSR such that it exceeds 60 dB over the entire tuning range
Numerical analysis of pulse pedestal and dynamic chirp formation on picosecond modelocked laser pulses after propagation through a semiconductor optical amplifier
A numerical analysis, based on a modified Schrodinger equation, of the formation of pulse pedestals and dynamic chirp formation on picosecond pulses after propagation through a semiconductor optical amplifier is presented. The numerical predictions are confirmed by an experiment that utilises the frequency resolved optical gating technique for the amplified pulse characterisation
Symbolic framework for linear active circuits based on port equivalence using limit variables
Published versio
Deconfined Fermions but Confined Coherence?
The cuprate superconductors and certain organic conductors exhibit transport
which is qualitatively anisotropic, yet at the same time other properties of
these materials strongly suggest the existence of a Fermi surface and low
energy excitations with substantial free electron character. The former of
these features is very difficult to account for if the material possesses three
dimensional coherence, while the latter is inconsistent with a description
based on a two dimensional fixed point. We therefore present a new proposal for
these materials in which they are categorized by a fixed point at which
transport in one direction is not renormalization group irrelevant, but is
intrinsically incoherent, i.e. the incoherence is present in a pure system, at
zero temperature. The defining property of such a state is that single electron
coherence is confined to lower dimensional subspaces (planes or chains) so that
it is impossible to observe interference effects between histories which
involve electrons moving between these subspaces.Comment: 31 pages, REVTEX, 3 eps figures, epsf.tex macr
Regulating Scotland's social landlords: localised resistance to technologies of performance management
Influenced by Foucault's later work on governmentality, this paper explores the regulation of social landlords as a 'technology of performance' concerned with governing the conduct of dispersed welfare agencies and the professionals within them. This is a mode of power that is both voluntary and coercive; it seeks to realise its ambitions not through direct acts of intervention, but by promoting the responsible self-governance of autonomous subjects. Through an analysis of the regulatory framework for social landlords in Scotland, this paper highlights the creation of a performance culture that seeks to mobilise housing organisations to reconcile their local management systems and service provision to external standards, whilst simultaneously wielding punitive interventions for non-compliance. However, housing professionals are not passive in all of this, and indeed, actively challenged and resisted these top-down attempts to govern them at arm's-length
The role of built environment energy efficiency in a sustainable UK energy economy
Energy efficiency in the built environment can make significant contributions to a sustainable energy economy. In order to achieve this, greater public awareness of the importance of energy efficiency is required. In the short term, new efficient domestic appliances, building technologies, legislation quantifying building plant performance, and improved building regulations to include installed plant will be required. Continuing these improvements in the longer term is likely to see the adoption of small-scale renewable technologies embedded in the building fabric. Internet-based energy services will see low-cost building energy management and control delivered to the mass market in order that plant can be operated and maintained at optimum performance levels and energy savings quantified. There are many technology options for improved energy performance of the building fabric and energy systems and it's not yet clear which will prove to be the most economic. Therefore, flexibility is needed in legislation and energy-efficiency initiatives
The EDEM methodology for housing upgrade analysis, carbon and energy labelling and national policy development
The ESRU Domestic Energy Model (EDEM) has been developed in response to demand from policy makers for a tool to assist in analysis of options for improving carbon and energy performance of housing across a range of possible future technologies, behaviours and environmental factors. A major challenge is to comprehend the large variation in fabric, systems (heating, hot water, lighting and appliances) and behaviours across the housing stock as well as uncertainty over future trends. Existing static models have limited ability to represent dynamic behaviour while use of detailed simulation has been based on modelling only a small number of representative designs. To address these challenges, EDEM has been developed as an easy to use, Web based tool, built on detailed simulation models aligned with national house survey data. From pragmatic inputs, EDEM can determine energy use and carbon emissions at any scale, from individual dwelling to national housing stock. EDEM was used at the behest of the Scottish Building Standards Agency and South Ayrshire Council to quantify the impact of upgrades including new and renewable energy systems. EDEM was also used to rate energy/carbon performance of dwellings as required by the EU Directive (EU, 2002). This paper describes the evolving EDEM methodology, its structure and operation then presents findings from applications. While initial EDEM projects have been for the Scottish housing stock the methodology is structured to facilitate project development and application to other countries
Why bean beer?
Beer can be a wholesome beverage, and the art of brewing beer has been intertwined with the development of civilised society for centuries. Today, the latest valuation of the economic value of beer (by accountants Ernst and Young in 2013), reported that Europe is the worldâs biggest producer of beer with over 4,500 breweries delivering around 390 million hectolitres annually â which in plain English is 68,632,200,000 pints (since 1 hectolitre is a small spillage less than 176 imperial pints). The industry employs over 2 million people, and around 125,000 of these are employed in breweries themselves. It should also be no surprise then that sales generated 53 billion Euro, which is almost doubled again by the value added from the supply chain. Also, the EU brewing sector had a trade surplus (i.e. exports were greater than imports) to the value of 3 billion Euro in 2012. Beer is serious business
Nonlinear Optics Quantum Computing with Circuit-QED
One approach to quantum information processing is to use photons as quantum
bits and rely on linear optical elements for most operations. However, some
optical nonlinearity is necessary to enable universal quantum computing. Here,
we suggest a circuit-QED approach to nonlinear optics quantum computing in the
microwave regime, including a deterministic two-photon phase gate. Our specific
example uses a hybrid quantum system comprising a LC resonator coupled to a
superconducting flux qubit to implement a nonlinear coupling. Compared to the
self-Kerr nonlinearity, we find that our approach has improved tolerance to
noise in the qubit while maintaining fast operation.Comment: 5 pages, 3 figure
Control Plane Compression
We develop an algorithm capable of compressing large networks into a smaller
ones with similar control plane behavior: For every stable routing solution in
the large, original network, there exists a corresponding solution in the
compressed network, and vice versa. Our compression algorithm preserves a wide
variety of network properties including reachability, loop freedom, and path
length. Consequently, operators may speed up network analysis, based on
simulation, emulation, or verification, by analyzing only the compressed
network. Our approach is based on a new theory of control plane equivalence. We
implement these ideas in a tool called Bonsai and apply it to real and
synthetic networks. Bonsai can shrink real networks by over a factor of 5 and
speed up analysis by several orders of magnitude.Comment: Extended version of the paper appearing in ACM SIGCOMM 201
- âŠ