26,029 research outputs found
Flux-lattice melting in LaOFFeAs: first-principles prediction
We report the theoretical study of the flux-lattice melting in the novel
iron-based superconductor and
. Using the Hypernetted-Chain closure and an
efficient algorithm, we calculate the two-dimensional one-component plasma pair
distribution functions, static structure factors and direct correlation
functions at various temperatures. The Hansen-Verlet freezing criterion is
shown to be valid for vortex-liquid freezing in type-II superconductors.
Flux-lattice meting lines for and
are predicted through the combination of the density
functional theory and the mean-field substrate approach.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
3D printing of cement composites
The aims of this study were to investigate the feasibility of generating 3D structures directly in rapid-hardening Portland cement (RHPC) using 3D Printing (3DP) technology. 3DP is a Additive Layer Manufacturing (ALM) process that generates parts directly from CAD in a layer-wise manner. 3D structures were successfully printed using a polyvinylalcohol: RHPC ratio of 3:97 w/w, with print resolutions of better than 1mm. The test components demonstrated the manufacture of features, including off-axis holes, overhangs / undercuts etc that would not be manufacturable using simple mould tools. Samples hardened by 1 day post-build immersion in water at RT offered Modulus of Rupture (MOR) values of up to 0.8±0.1MPa, and, after 26 days immersion in water at RT, offered MOR values of 2.2±0.2MPa, similar to bassanite-based materials more typically used in 3DP (1-3 MPa). Post-curing by water immersion restructured the structure, removing the layering typical of ALM processes, and infilling porosity
Incommensurate spin-density wave and multiband superconductivity in NaFeAs as revealed by nuclear magnetic resonance
We report a Na and As nuclear magnetic resonance (NMR)
investigation of NaFeAs series (, 0.9, 0.8) exhibiting a
spin-density wave (SDW) order below , 50 and 43 K for ,
0.9, 0.8, respectively, and a bulk superconductivity below K
for x=0.9. Below , a spin-lattice relaxation reveals the presence
of gapless particle-hole excitations in the whole range, meaning that a
portion of the Fermi surface remains gapless. The superconducting fraction as
deduced from the bulk susceptibility scales with this portion, while the SDW
order parameter as deduced from the NMR linewidth scales inversely with it. The
NMR lineshape can only be reproduced assuming an incommensurate (IC) SDW. These
findings qualitatively correspond to the mean-field models of competing
interband magnetism and intraband superconductivity, which lead to an IC SDW
order coexisting with superconductivity in part of the phase diagram.Comment: 6 pages, 4 figure
FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search
We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for
\textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search
system for ultra-high dimensional datasets on a single machine, that does not
require similarity computations and is tailored for high-performance computing
platforms. By leveraging a LSH style randomized indexing procedure and
combining it with several principled techniques, such as reservoir sampling,
recent advances in one-pass minwise hashing, and count based estimations, we
reduce the computational and parallelization costs of similarity search, while
retaining sound theoretical guarantees.
We evaluate FLASH on several real, high-dimensional datasets from different
domains, including text, malicious URL, click-through prediction, social
networks, etc. Our experiments shed new light on the difficulties associated
with datasets having several million dimensions. Current state-of-the-art
implementations either fail on the presented scale or are orders of magnitude
slower than FLASH. FLASH is capable of computing an approximate k-NN graph,
from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than
10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam
dataset, using brute-force (), will require at least 20 teraflops. We
provide CPU and GPU implementations of FLASH for replicability of our results
Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: Need for chemohydrodynamic instability at the nanoscale
We explore nanoscale hydrodynamical effects on synthesis and self-assembly of
cadmium sulfide nanotubes oriented along one direction. These nanotubes are
synthesized by horizontal capillary flow of two different chemical reagents
from opposite directions through nanochannels of porous anodic alumina which
are used primarily as nanoreactors. We show that uneven flow of different
chemical precursors is responsible for directionally asymmetric growth of these
nanotubes. On the basis of structural observations using scanning electron
microscopy, we argue that chemohydrodynamic convective interfacial instability
of multicomponent liquid-liquid reactive interface is necessary for sustained
nucleation of these CdS nanotubes at the edges of these porous nanochannels
over several hours. However, our estimates clearly suggest that classical
hydrodynamics cannot account for the occurrence of such instabilities at these
small length scales. Therefore, we present a case which necessitates further
investigation and understanding of chemohydrodynamic fluid flow through
nanoconfined channels in order to explain the occurrence of such interfacial
instabilities at nanometer length scales.Comment: 26 pages, 6 figures; http://www.iiserpune.ac.in/researchhighlight
Electron-doped phosphorene: A potential monolayer superconductor
We predict by first-principles calculations that the electron-doped
phosphorene is a potential BCS-like superconductor. The stretching modes at the
Brillouin-zone center are remarkably softened by the electron-doping, which
results in the strong electron-phonon coupling. The superconductivity can be
introduced by a doped electron density () above
cm, and may exist over the liquid helium temperature when cm. The maximum critical temperature is predicted to be
higher than 10 K. The superconductivity of phosphorene will significantly
broaden the applications of this novel material
- …
