606 research outputs found

    Johari-Goldstein relaxation far below Tg: Experimental evidence for the Gardner transition in structural glasses?

    Full text link
    Experimental evidence for the Gardner transition, theoretically predicted to arise deep in the glassy state of matter, is scarce. At this transition, the energy landscape sensed by the particles forming the glass is expected to become more complex. In the present work, we report the dielectric response of two typical glass formers with well-pronounced Johari-Goldstein beta relaxation following this response down to unprecedented low temperatures, far below the glass transition. As the Johari-Goldstein process is believed to arise from the local structure of the energy landscape, its investigation seems an ideal tool to seek evidence for the Gardner transition. Indeed, we find an unusual broadening of the beta relaxation below TG ~ 110 K for sorbitol and TG ~ 100 K for xylitol, in excess of the expected broadening arising from a distribution of energy barriers. Thus, these results provide hints at the presence of the Gardner transition in canonical structural glass formers.Comment: 6 pages, 3 figures + 2 pages, 3 figures in Supplemental Materia

    α\alpha- and β\beta- Relaxation Dynamics of a fragile plastic crystal

    Full text link
    We present a thorough dielectric investigation of the relaxation dynamics of plastic crystalline Freon112, which exhibits freezing of the orientational degrees of freedom into a glassy crystal below 90 K. Among other plastic crystals, Freon112 stands out by being relatively fragile within Angell's classification scheme and by showing an unusually strong β\beta-relaxation. Comparing the results to those on Freon112a, having only a single molecular conformation, points to the importance of the presence of two molecular conformations in Freon112 for the explanation of its unusual properties.Comment: 17 pages, 6 figure

    Dielectric and conductivity relaxation in mixtures of glycerol with LiCl

    Full text link
    We report a thorough dielectric characterization of the alpha relaxation of glass forming glycerol with varying additions of LiCl. Nine salt concentrations from 0.1 - 20 mol% are investigated in a frequency range of 20 Hz - 3 GHz and analyzed in the dielectric loss and modulus representation. Information on the dc conductivity, the dielectric relaxation time (from the loss) and the conductivity relaxation time (from the modulus) is provided. Overall, with increasing ion concentration, a transition from reorientationally to translationally dominated behavior is observed and the translational ion dynamics and the dipolar reorientational dynamics become successively coupled. This gives rise to the prospect that by adding ions to dipolar glass formers, dielectric spectroscopy may directly couple to the translational degrees of freedom determining the glass transition, even in frequency regimes where usually strong decoupling is observed.Comment: 8 pages, 7 figure

    Cooperativity and Heterogeneity in Plastic Crystals Studied by Nonlinear Dielectric Spectroscopy

    Full text link
    The glassy dynamics of plastic-crystalline cyclo-octanol and ortho-carborane, where only the molecular reorientational degrees of freedom freeze without long-range order, is investigated by nonlinear dielectric spectroscopy. Marked differences to canonical glass formers show up: While molecular cooperativity governs the glassy freezing, it leads to a much weaker slowing down of molecular dynamics than in supercooled liquids. Moreover, the observed nonlinear effects cannot be explained with the same heterogeneity scenario recently applied to canonical glass formers. This supports ideas that molecular relaxation in plastic crystals may be intrinsically non-exponential. Finally, no nonlinear effects were detected for the secondary processes in cyclo-octanol.Comment: Final version as accepted for publication in Phys. Rev. Lett. 6 pages, 5 figures (including 1 page and figure in Supplemental Material

    Scaling of broadband dielectric data of glass-forming liquids and plastic crystals

    Full text link
    The Nagel-scaling and the modified scaling procedure proposed recently by Dendzik et al. have been applied to broadband dielectric data on two glass- forming liquids (glycerol and propylene carbonate) and three plastic crystals (ortho-carborane, meta-carborane, and 1-cyano-adamantane). Our data extend the upper limit of the abscissa range to considerably higher values than in previously published analyses. At the highest frequencies investigated, deviations from a single master curve show up which are most pronounced in the Dendzik-scaling plot. The loss curves of the plastic crystals do not scale in the Nagel-plot, but they fall onto a separate master curve in the Dendzik-plot. In addition, we address the question of a possible divergence of the static susceptibility near the Vogel-Fulcher temperature. For this purpose, the low-temperature evolution of the high-frequency wing of the dielectric loss peaks is investigated in detail. No convincing proof for such a divergence can be deduced from the present broadband data.Comment: 7 pages including 6 figures submitted to Eur. Phys. J.

    Nonlinear dielectric response of Debye, alpha, and beta relaxation in 1-propanol

    Full text link
    We present nonlinear dielectric measurements of glass-forming 1-propanol, a prototypical example for the monohydroxy alcohols that are known to exhibit unusual relaxation dynamics, namely an additional Debye relaxation, slower than the structural alpha relaxation. Applying high ac fields of 468 kV/cm allows for a detailed investigation of the nonlinear properties of all three relaxation processes occurring in 1-propanol, namely the Debye, alpha, and beta relaxation. Both the field-induced variations of dielectric constant and loss are reported. Polarization saturation and the absorption of field energy govern the findings in the Debye-relaxation regime, well consistent with the suggested cluster-like nature of the relaxing entities. The behavior of the alpha relaxation is in good accord with the expectations for a heterogeneous relaxation scenario. Finally, the Johari-Goldstein beta-relaxation in 1-propanol seems to exhibit no or only weak field dependence, in agreement with recent findings for the excess wing of canonical glass formers.Comment: 8 pages, 4 figure

    Low temperature dielectric relaxation study of aqueous solutions of diethylsulfoxide

    Full text link
    In the present work, dielectric spectra of mixtures of diethylsulfoxide (DESO) and water are presented, covering a concentration range of 0.2 - 0.3 molar fraction of DESO. The measurements were performed at frequencies between 1 Hz and 10 MHz and for temperatures between 150 and 300 K. It is shown that DESO/water mixtures have strong glass-forming abilities. The permittivity spectra in these mixtures reveal a single relaxation process. It can be described by the Havriliak-Negami relaxation function and its relaxation times follow the Vogel-Fulcher-Tammann law, thus showing the typical signatures of glassy dynamics. The concentration dependence of the relaxation parameters, like fragility, broadening, and glass temperature, are discussed in detail.Comment: 20 pages, 5 figure

    Ions in glass forming glycerol: Close correlation of alpha and fast beta relaxation

    Full text link
    We provide broadband dielectric loss spectra of glass-forming glycerol with varying additions of LiCl. The measurements covering frequencies up to 10 THz extend well into the region of the fast beta process, commonly ascribed to caged molecule dynamics. Aside of the known variation of the structural alpha relaxation time and a modification of the excess wing with ion content, we also find a clear influence on the shallow loss minimum arising from the fast beta relaxation. Within the framework of mode-coupling theory, the detected significant broadening of this minimum is in reasonable accord with the found variation of the alpha-relaxation dynamics. A correlation between alpha-relaxation rate and minimum position holds for all ion concentrations and temperatures, even below the critical temperature defined by mode-coupling theory.Comment: 5 pages, 5 figure
    corecore