38 research outputs found

    The regulation of fat metabolism during aerobic exercise

    Get PDF
    Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells

    An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases

    Get PDF
    none8noNeuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcomeopenMarra Federica, Lunetti Paola, Curcio Rosita, Lasorsa Francesco Massimo, Capobianco Loredana, Porcelli Vito, Dolce Vincenza, Fiermonte Giuseppe and Scarcia PasqualeMarra, Federica; Lunetti, Paola; Curcio, Rosita; Lasorsa Francesco, Massimo; Capobianco, Loredana; Porcelli, Vito; Dolce, Vincenza; Fiermonte Giuseppe and Scarcia, Pasqual

    Drosophila melanogaster Uncoupling Protein-4A (UCP4A) Catalyzes a Unidirectional Transport of Aspartate

    Get PDF
    Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson’s disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system

    Oxidized alginate dopamine conjugate: In vitro characterization for nose-to-brain delivery application

    Get PDF
    Background: The blood–brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginatedopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. Methods: A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and1H-NMR spectroscopies, as well as in vitro mucoadhesive and release tests. Results: Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 µg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. Conclusions: Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administration

    Simulation of Transport under Different Temperature Conditions: Effects on Extra Virgin Olive Oil Quality

    No full text
    Extra virgin olive oil (EVOO) is imported/exported globally. However, little is known about the qualitative effects of the transport conditions, and, consequently, they are not usually controlled. This study simulates temperature fluctuations in summer (18–42.5 °C, 12 h–12 h, one week) and winter (4–16.5 °C, 12 h–12 h, one week), to examine their effect on EVOO quality. The EVOO samples undergo evaluation with chemical analyses before and immediately after treatment and after 24 weeks of storage (at room temperature in the dark). The simulated summer conditions cause oil oxidation. This situation bears a connection to an increased lipid oxidation rate, peroxide value, 1.2/1.3 diacylglycerol ratio, rancid score, and rancid-related volatile compounds. The simulated winter conditions also cause oil oxidation. In this case, the rancid score and the rancid-related volatile compound content show similarities to the samples exposed to the simulated summer conditions. In winter conditions, the temperature fluctuations seem to play a key role in the rancid defect appearance. Eleven of the 15 (summer) and 10 of the 15 (winter) samples are downgraded from the category of “extra virgin” to “virgin” after 24 weeks of bottle storage. Practical applications: Transportation conditions constitute a critical factor in determining extra virgin olive oil quality. Transport is a critical control point in maintaining the quality of extra virgin olive oil, which can be transported without any specific controls. The obtained results improve the knowledge regarding the risks related to transport in hot and cold seasons, assessing the oxidative damages in both conditions on three different cultivars. A better understanding of the degradation phenomena during transportation helps develop specific technologies and practices (e.g., controlled-temperature transportation, thermal insulation materials, use of digi-sense nonreversible temperature labels, and so on) to counter the phenomena and evaluate the costs and limits of the existing protocols

    Mitochondrial glutamate carriers from Drosophila melanogaster: Biochemical, evolutionary and modeling studies

    No full text
    The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GCs encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukariotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggest that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata

    Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications—A Comprehensive Review

    No full text
    Hyaluronic acid (HA) is a glycosaminoglycan widely distributed in the human body, especially in body fluids and the extracellular matrix of tissues. It plays a crucial role not only in maintaining tissue hydration but also in cellular processes such as proliferation, differentiation, and the inflammatory response. HA has demonstrated its efficacy as a powerful bioactive molecule not only for skin antiaging but also in atherosclerosis, cancer, and other pathological conditions. Due to its biocompatibility, biodegradability, non-toxicity, and non-immunogenicity, several HA-based biomedical products have been developed. There is an increasing focus on optimizing HA production processes to achieve high-quality, efficient, and cost-effective products. This review discusses HA’s structure, properties, and production through microbial fermentation. Furthermore, it highlights the bioactive applications of HA in emerging sectors of biomedicine
    corecore