488 research outputs found
Ponderomotive manipulation of cold subwavelength plasmas
Ponderomotive forces (PFs) induced in cold subwavelength plasmas by an
externally applied electromagnetic wave are studied analytically. To this end,
the plasma is modeled as a sphere with a radially varying permittivity, and the
internal electric fields are calculated by solving the macroscopic Maxwell
equations using an expansion in Debye potentials. It is found that the PF is
directed opposite to the plasma density gradient, similarly to large-scale
plasmas. In case of a uniform density profile, a residual spherically symmetric
compressive PF is found, suggesting possibilities for contactless ponderomotive
manipulation of homogeneous subwavelength objects. The presence of a surface PF
on discontinuous plasma boundaries is derived. This force is essential for a
microscopic description of the radiation-plasma interaction consistent with
momentum conservation. It is shown that the PF integrated over the plasma
volume is equivalent to the radiation pressure exerted on the plasma by the
incident wave. The concept of radiative acceleration of subwavelength plasmas,
proposed earlier, is applied to ultracold plasmas. It is estimated that these
plasmas may be accelerated to keV ion energies, resulting in a neutralized beam
with a brightness comparable to that of current high-performance ion sources.Comment: 16 pages, 6 figure
Classical formulations of the electromagnetic self-force of extended charged bodies
Several noncovariant formulations of the electromagnetic self-force of
extended charged bodies, as have been developed in the context of classical
models of charged particles, are compared. The mathematical equivalence of the
various dissimilar self-force expressions is demonstrated explicitly by
deriving these expressions directly from one another. The applicability of the
self-force formulations and their significance in the wider context of
classical charged particle models are discussed.Comment: 21 pages, 1 figur
Gigahertz repetition rate thermionic electron gun concept
We present a novel concept for the generation of gigahertz repetition rate
high brightness electron bunches. A custom design 100 kV thermionic gun
provides a continuous electron beam, with the current determined by the
filament size and temperature. A 1 GHz rectangular RF cavity deflects the beam
across a knife-edge, creating a pulsed beam. Adding a higher harmonic mode to
this cavity results in a flattened magnetic field profile which increases the
duty cycle to 30%. Finally, a compression cavity induces a negative
longitudinal velocity-time chirp in a bunch, initiating ballistic compression.
Adding a higher harmonic mode to this cavity increases the linearity of this
chirp and thus decreases the final bunch length. Charged particle simulations
show that with a 0.15 mm radius LaB6 filament held at 1760 K, this method can
create 279 fs, 3.0 pC electron bunches with a radial rms core emittance of
0.089 mm mrad at a repetition rate of 1 GHz.Comment: 12 pages, 12 figure
Spatially encoded light for Large-alphabet Quantum Key Distribution
Most Quantum Key Distribution protocols use a two-dimensional basis such as
HV polarization as first proposed by Bennett and Brassard in 1984. These
protocols are consequently limited to a key generation density of 1 bit per
photon. We increase this key density by encoding information in the transverse
spatial displacement of the used photons. Employing this higher-dimensional
Hilbert space together with modern single-photon-detecting cameras, we
demonstrate a proof-of-principle large-alphabet Quantum Key Distribution
experiment with 1024 symbols and a shared information between sender and
receiver of 7 bit per photon.Comment: 9 pages, 6 figures, Added references, Updated Fig. 1 in the main
text, Updated Fig.1 in supplementary material, Added section Trojan-horse
attacks in supplementary material, title changed, Added paragraphs about
final key rate and overfilling the detector to result sectio
High quality ultrafast transmission electron microscopy using resonant microwave cavities
Ultrashort, low-emittance electron pulses can be created at a high repetition
rate by using a TM deflection cavity to sweep a continuous beam across
an aperture. These pulses can be used for time-resolved electron microscopy
with atomic spatial and temporal resolution at relatively large average
currents. In order to demonstrate this, a cavity has been inserted in a
transmission electron microscope, and picosecond pulses have been created. No
significant increase of either emittance or energy spread has been measured for
these pulses.
At a peak current of pA, the root-mean-square transverse normalized
emittance of the electron pulses is m rad in the direction parallel to the streak of the cavity, and
m rad in the perpendicular
direction for pulses with a pulse length of 1.1-1.3 ps. Under the same
conditions, the emittance of the continuous beam is
m rad.
Furthermore, for both the pulsed and the continuous beam a full width at half
maximum energy spread of eV has been measured
Heating mechanisms in radio frequency driven ultracold plasmas
Several mechanisms by which an external electromagnetic field influences the
temperature of a plasma are studied analytically and specialized to the system
of an ultracold plasma (UCP) driven by a uniform radio frequency (RF) field.
Heating through collisional absorption is reviewed and applied to UCPs.
Furthermore, it is shown that the RF field modifies the three body
recombination process by ionizing electrons from intermediate high-lying
Rydberg states and upshifting the continuum threshold, resulting in a
suppression of three body recombination. Heating through collisionless
absorption associated with the finite plasma size is calculated in detail,
revealing a temperature threshold below which collisionless absorption is
ineffective.Comment: 14 pages, 7 figure
Insulin-like growth factor II receptors in human brain and their absence in astrogliotic plaques in multiple sclerosis
Insulin-like growth factor (IGF) II receptors were studied in human adult brain by using autoradiography with [(125)I]IGF-II. Receptors were found to be widely distributed throughout all neuronal regions. The highest densities were found in plexus choroideus, granular layer of the cerebellar cortex, gyrus dendatus and pyramidal layer of the hippocampus, striatum, and cerebral cortex. White matter was devoid of IGF-II receptors. We also examined [(125)I]IGF-II binding in six plaques of multiple sclerosis, which were characterized by a dense network of astrocytes. Ne were unable to detect IGF-II receptors in any of the astrogliotic plaques, suggesting that IGF-II receptors in human brain are not involved in astrogliosis. The regional variations in neuronal distribution of IGF-II receptors suggest involvement of IGF-II in functions associated with specific neuronal pathways. (C) 2000 Elsevier Science B.V. All rights reserved
- …