45 research outputs found

    A practical indicator for surface ocean heat and freshwater buoyancy fluxes and its application to the NCEP reanalysis data

    Get PDF
    The buoyancy flux at the air/sea interface plays a key role in water mass transformation and mixing as it modifies surface water density and in turn drives overturning and enhances stratification. It is the interplay of these two independent heat and freshwater buoyancy flux components that is of central importance when analysing mechanisms of the ocean/atmosphere interaction. Here, a diagnostic quantity (ΘB) is presented that allows to capture the relative contribution of both components on the buoyancy flux in one single quantity. Using NCEP reanalysis of heat and freshwater fluxes (1948–2009) demonstrates that ΘB is a convenient tool to analyse both the temporal and spatial variability of their corresponding buoyancy fluxes. For the global ocean the areal extent of buoyancy gain and loss regions changed by 10%, with the largest extent of buoyancy gain during the 1970–1990 period. In the subpolar North Atlantic, and likewise in the South Pacific, decadal variability in freshwater flux is pronounced and, for the latter region, takes control over the total buoyancy flux since the 1980s. Some of the areal extent time series show a significant correlation with large-scale climate indices

    Ocean mixedlayer depth: A subsurface proxy for ocean-atmosphere variability

    Get PDF
    A new criterion, based on the shallowest extreme curvature of near surface layer density or temperature profiles, is established for demarking the mixed layer depth, h mix. Using historical global hydrographic profile data, including conductivity-temperature-depth and expendable bathythermograph data obtained during World Ocean Circulation Experiment, its seasonal variability and monthly to interannual anomalies are computed. Unlike the more commonly used Δ criterion, the new criterion is able to deal with both different vertical resolutions of the data set and a large variety of observed stratification profiles. For about two thirds of the profiles our algorithm produces an h mix/c that is more reliable than the one of the Δ criterion. The uncertainty for h mix/c is ±5 m for high- (<5 m) and ±8 m for low- (<20 m) resolution profiles. A quality index, QImix, which compares the variance of a profile above h mix to the variance to a depth of 1.5 × h mix, shows that for the 70% of the profile data for which a clearly recognizable well-mixed zone exists near the surface, our criterion identifies the depth of the well-mixed zone in all cases. The standard deviation of anomalous monthly h mix/c is typically 20–70% of the long-term mean h mix/c . In the tropical Pacific the monthly mean anomalies of h mix/c are not well correlated with anomalies of sea surface temperature, which indicate that a variety of turbulent processes, other than surface heat fluxes, are important in the upper ocean there. Comparisons between observed h mix/c and Massachusetts Institute of Techonology/ocean general circulation model/Estimating the Circulation and Climate of the Ocean model simulated mixed layer depth indicate that the KPP algorithm captures in general a 30% smaller mixed layer depth than observed

    Southern Hemisphere subtropical drying as a transient response to warming

    Get PDF
    Climate projections1–3 and observations over recent decades4,5 indicate that precipitation in subtropical latitudes declines in response to anthropogenic warming, with significant implications for food production and population sustainability. However, this conclusion is derived from emissions scenarios with rapidly increasing radiative forcing to the year 21001,2, which may represent very different conditions from both past and future ‘equilibrium’ warmer climates. Here, we examine multi-century future climate simulations and show that in the Southern Hemisphere subtropical drying ceases soon after global temperature stabilizes. Our results suggest that twenty-first century Southern Hemisphere subtropical drying is not a feature of warm climates per se, but is primarily a response to rapidly rising forcing and global temperatures, as tropical sea-surface temperatures rise more than southern subtropical sea-surface temperatures under transient warming. Subtropical drying may therefore be a temporary response to rapid warming: as greenhouse gas concentrations and global temperatures stabilize, Southern Hemisphere subtropical regions may experience positive precipitation trends
    corecore