288 research outputs found
Critical temperature of a fully anisotropic three-dimensional Ising model
The critical temperature of a three-dimensional Ising model on a simple cubic
lattice with different coupling strengths along all three spatial directions is
calculated via the transfer matrix method and a finite size scaling for L x L
oo clusters (L=2 and 3). The results obtained are compared with available
calculations. An exact analytical solution is found for the 2 x 2 oo Ising
chain with fully anisotropic interactions (arbitrary J_x, J_y and J_z).Comment: 17 pages in tex using preprint.sty for IOP journals, no figure
Coherent X-ray Scattering from Manganite Charge and Orbital Domains
We report coherent x-ray scattering studies of charge and orbital domains in
manganite systems. The experiments were carried out on LaMnO_3 and
Pr_{0.6}Ca_{0.4}MnO_3, with the incident photon energy tuned near the Mn K
edge. At room temperature, the orbital speckle pattern of LaMnO_3 was observed
to be constant over a timescale of at least minutes, which is indicative of
static orbital domains on this timescale. For Pr_{0.6}Ca_{0.4}MnO_3, both
charge and orbital speckle patterns were observed. The observation of the
latter rules out the presence of fast orbital fluctuations, while long time
series data-- on the order of several minutes-- were suggestive of slow dynamic
behavior. In contrast, the charge order speckle patterns were static.Comment: 6 pages, 4 figure
Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members
Adult neural stem cells and multiciliated ependymalcells are glial cells essential for neurological func-tions. Together, they make up the adult neurogenicniche. Using both high-throughput clonal analysisand single-cell resolution of progenitor division pat-terns and fate, we show that these two componentsof the neurogenic niche are lineally related: adult neu-ral stem cells are sister cells to ependymal cells,whereas most ependymal cells arise from the termi-nal symmetric divisions of the lineage. Unexpectedly,we found that the antagonist regulators of DNA repli-cation, GemC1 and Geminin, can tune the proportionof neural stem cells and ependymal cells. Our find-ings reveal the controlled dynamic of the neurogenicniche ontogeny and identify the Geminin familymembers as key regulators of the initial pool of adultneural stem cells
Ising Universality in Three Dimensions: A Monte Carlo Study
We investigate three Ising models on the simple cubic lattice by means of
Monte Carlo methods and finite-size scaling. These models are the spin-1/2
Ising model with nearest-neighbor interactions, a spin-1/2 model with
nearest-neighbor and third-neighbor interactions, and a spin-1 model with
nearest-neighbor interactions. The results are in accurate agreement with the
hypothesis of universality. Analysis of the finite-size scaling behavior
reveals corrections beyond those caused by the leading irrelevant scaling
field. We find that the correction-to-scaling amplitudes are strongly dependent
on the introduction of further-neighbor interactions or a third spin state. In
a spin-1 Ising model, these corrections appear to be very small. This is very
helpful for the determination of the universal constants of the Ising model.
The renormalization exponents of the Ising model are determined as y_t = 1.587
(2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q =
^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry.
The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546
(10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal
of Physics A
Image informatics strategies for deciphering neuronal network connectivity
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci
The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed
Advanced optical imaging in living embryos
Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis
A Genetic Strategy for Stochastic Gene Activation with Regulated Sparseness (STARS)
It remains a challenge to establish a straightforward genetic approach for controlling the probability of gene activation or knockout at a desired level. Here, we developed a method termed STARS: stochastic gene activation with genetically regulated sparseness. The stochastic expression was achieved by two cross-linked, mutually-exclusive Cre-mediated recombinations. The stochastic level was further controlled by regulating Cre/lox reaction kinetics through varying the intrachromosomal distance between the lox sites mediating one of the recombinations. In mammalian cell lines stably transfected with a single copy of different STARS transgenes, the activation/knockout of reporter genes was specifically controlled to occur in from 5% to 50% of the cell population. STARS can potentially provide a convenient way for genetic labeling as well as gene expression/knockout in a population of cells with a desired sparseness level
Coherent magnetic diffraction from the uranium M4 edge in the multi-k magnet, USb
International audienceThe slow magnetic dynamics, from seconds to kiloseconds, of the canonical 3-k antiferromagnet USb have been probed, using X-ray photon correlation spectroscopy (XPCS). In this work, XPCS is combined with resonant X-ray diffraction to focus on scattering at an antiferromagnetic Bragg peak. High quality coherent magnetic diffraction patterns were recorded (speckle contrast of ~ 88%) and magnetic domains were observed; the number of domains increases on warming to T* ~ 160 K, where the spin waves soften to zero frequency, and again on warming to TN = 218 K. The intensity auto-correlation, g2(t), is primarily static over 1000 s, with a small dynamical process (change of ~ 0.4%) that increases in rate close to the transitions
- …