34 research outputs found
Modeling on fluid flow and inclusion motion in centrifugal continuous casting strands
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed
Fixation of a human rib by an intramedullary telescoping splint anchored by bone cement
A novel concept for rib fixation is presented that involves the use of a bioresorbable polymer intramedullary telescoping splint. Bone cement is used to anchor each end of the splint inside the medullary canal on each side of the fracture site. In this manner, rib fixation is achieved without fixation device protrusion from the rib, making the splint completely intramedullary. Finite element analysis is used to demonstrate that such a splint/cement composite can preserve rib fixation subjected to cough-intensity force loadings. Computational fluid dynamics and porcine rib experiments were used to study the anchor formation process required to complete the fixation
Predictions for optimal mitigation of paracrine inhibitory signalling in haemopoietic stem cell cultures
INTRODUCTION: Recent studies in the literature have highlighted the critical role played by cell signalling in determining haemopoietic stem cell (HSC) fate within ex vivo culture systems. Stimulatory signals can enhance proliferation and promote differentiation, whilst inhibitory signals can significantly limit culture output. METHODS: Numerical models of various mitigation strategies are presented and applied to determine effectiveness of these strategies toward mitigation of paracrine inhibitory signalling inherent in these culture systems. The strategies assessed include mixing, media-exchange, fed-batch and perfusion. RESULTS: The models predict that significant spatial concentration gradients exist in typical cell cultures, with important consequences for subsequent cell expansion. Media exchange is shown to be the most effective mitigation strategy, but remains labour intensive and difficult to scale-up for large culture systems. The fed-batch strategy is only effective at very small Peclet number, and its effect is diminished as the cell culture volume grows. Conversely, mixing is effective at high Peclet number, and ineffective at low Peclet number. The models predict that cell expansion in fed-batch cultures becomes independent of increasing dilution rate, consistent with experimental results previously reported in the literature. In contrast, the models predict that increasing the flow rate in perfused cultures will lead to increased cell expansion, indicating the suitability of perfusion for use as an automated, tunable strategy. The effect of initial cell seeding density is also investigated, with the model showing that perfusion outperforms dilution for all densities considered. CONCLUSIONS: The models predict that the impact of inhibitory signalling in HSC cultures can be mitigated against using media manipulation strategies, with the optimal strategy dependent upon the protein diffusion time-scale relative to the media manipulation time-scale. The key messages from this study can be applied to any complex cell culture scenario where cell-cell interactions and paracrine signalling networks impact upon cell fate and cell expansion
A volume-tracking method for the modelling of multi-fluid flows in engineering unit operations
A numerical code is presented for the numerical simulation of multi-fluid flows in pyrometallurgical unit operations. The code, MFVOF, is a finite difference code that allows transient solutions to immiscible multi-fluid flow problems to be generated in 2-D Cartesian and cylindrical geometries. The code is based on the use of an accurate PLIC (piecewise linear interface calculation) volume-tracking scheme to track the distortions of fluid bodies, with a redistribution procedure to ameliorate the formation of subgrid-scale fluid ligaments. Other recent enhancements to the code include swirl and expansion/compression modelling. The MFVOF code is not only able to model flows with low-curvature interface traditional applications of volume tracking - it is also able to generate robust and realistic transient representations of fragmentation and coalescence involving higher-curvature interfaces. This suggests that volume tracking can become increasingly useful for multi-phase flow modelling in chemical engineering unit operations, beyond traditional civil engineering and metallurgical applications
A volume-tracking method for the modelling of multi-fluid flows in engineering unit operations
A numerical code is presented for the numerical simulation of multi-fluid flows in pyrometallurgical unit operations. The code, MFVOF, is a finite difference code that allows transient solutions to immiscible multi-fluid flow problems to be generated in 2-D Cartesian and cylindrical geometries. The code is based on the use of an accurate PLIC (piecewise linear interface calculation) volume-tracking scheme to track the distortions of fluid bodies, with a redistribution procedure to ameliorate the formation of subgrid-scale fluid ligaments. Other recent enhancements to the code include swirl and expansion/compression modelling. The MFVOF code is not only able to model flows with low-curvature interface traditional applications of volume tracking - it is also able to generate robust and realistic transient representations of fragmentation and coalescence involving higher-curvature interfaces. This suggests that volume tracking can become increasingly useful for multi-phase flow modelling in chemical engineering unit operations, beyond traditional civil engineering and metallurgical applications