8 research outputs found

    Interaction of 3â-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la203589u.3β-Amino-5-cholestene (aminocholesterol) is a synthetic sterol whose properties in bilayer membranes have been examined. In fluid palmitoyl sphingomyelin (PSM) bilayers, aminocholesterol and cholesterol were equally effective in increasing acyl chain order, based on changes in diphenylhexatriene (DPH) anisotropy. In fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, aminocholesterol ordered acyl chains, but slightly less efficiently than cholesterol. Aminocholesterol eliminated the PSM and DPPC gel-to-liquid crystalline phase transition enthalpy linearly with concentration, and the enthalpy approached zero at 30 mol% sterol. Whereas cholesterol was able to increase the thermostability of ordered PSM domains in a fluid bilayer, aminocholesterol under equal conditions failed to do this, suggesting that its interaction with PSM was not as favorable as cholesterol’s. In ternary mixed bilayers, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), PSM or DPPC, and cholesterol at proportions to contain a liquid-ordered phase (60:40 by mol of POPC and PSM or DPPC, and 30 mol% cholesterol), the average life-time of trans parinaric acid (tPA) was close to 20 ns. When cholesterol was replaced with aminocholesterol in such mixed bilayers, the average life-time of tPA was only marginally shorter (about 18 ns). This observation, together with acyl chain ordering data, clearly shows that aminocholesterol was able to form a liquid-ordered phase with saturated PSM or DPPC. We conclude that aminocholesterol should be a good sterol replacement in model membrane systems for which a partial positive charge is deemed beneficial

    Oxysterol Binding Protein-dependent Activation of Sphingomyelin Synthesis in the Golgi Apparatus Requires Phosphatidylinositol 4-Kinase IIα

    Get PDF
    The study identifies a sterol- and oxysterol binding protein (OSBP)-regulated phosphatidylinositol 4-kinase that regulates ceramide transport protein (CERT) activity and sphingomyelin (SM) synthesis. RNA interference silencing experiments identify PI4KIIα; as the mediator of Golgi recruitment of CERT, providing a potential mechanism for coordinating assembly of SM and cholesterol in the Golgi or more distal compartments

    A Calorimetric and Spectroscopic Comparison of the Effects of Lathosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes

    No full text

    4.3 Coupling of Neuronal Function to Oxygen and Glucose Metabolism Through Changes in Neurotransmitter Dynamics as Revealed with Aging, Hypoglycemia, and Hypoxia

    No full text
    corecore