62 research outputs found

    Molecular understanding of the serum antibody repertoires after seasonal influenza vaccination among different age cohorts

    Get PDF
    Numerous influenza vaccination studies based on bulk serology have indicated that the antibody responses to the vaccine markedly decrease in the elderly. However, whether such decline results from the changes in the overall quantity or the quality of the circulating antibodies in serum remains unknown. Utilizing novel antibody repertoire profiling technologies, combining tandem mass spectrometry (LC-MS/MS) and high-throughput sequencing, we investigated the influenza-specific serological repertoires of 10 donors ranging from 26 to 70 years old vaccinated with Fluzone¼ 2013-2014 and/or 2014-2015. In particular, we determined the serum antibodies that are specific to the H1 or H3 component of the vaccine or cross-reactive between the two (H1+H3) and examined their relative quantitative distributions. Our data indicate that the proportion of H1+H3 antibodies significantly increases in the elderly and that the somatic hypermutation rates of the influenza-specific antibodies are higher in the elderly. These results suggest that the repeated exposure to the different virus subtypes could have led to the prolonged selection of H1+H3 antibodies targeting highly conserved epitopes. To evaluate the potency of the antibodies circulating in different age groups, we recombinantly expressed a number of representative monoclonal antibodies isolated from the donors in different age groups for further characterizations. Overall, our analysis suggests that the influenza-specific repertoire in the elderly may converge toward shared epitopes but the quality of the antibodies can be superior in terms of cross-reactivity. However, because the antibody repertoire “shrinks” as we age while targeting more conserved epitopes across different influenza subtypes, it is possible that the elderly is particularly susceptible to significantly altered strains. Collectively, profiling vaccine induced serological repertoires among different age cohorts can provide unprecedented insights regarding humoral immunity associated with age and a potential explanation for the vulnerability of the elderly

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations

    No full text
    STUDY QUESTION: Can whole-exome sequencing (WES) of patients with multiple morphological abnormalities of the sperm flagella (MMAF) identify causal mutations in new genes or mutations in the previously identified dynein axonemal heavy chain 1 (DNAH1) gene? SUMMARY ANSWER: WES for six families with men affected by MMAF syndrome allowed the identification of DNAH1 mutations in four affected men distributed in two out of the six families but no new candidate genes were identified. WHAT IS KNOWN ALREADY: Mutations in DNAH1, an axonemal inner dynein arm heavy chain gene, have been shown to be responsible for male infertility due to a characteristic form of asthenozoospermia called MMAF, defined by the presence in the ejaculate of spermatozoa with a mosaic of flagellar abnormalities including absent, coiled, bent, angulated, irregular and short flagella. STUDY DESIGN, SIZE, DURATION: This was a retrospective genetics study of patients presenting a MMAF phenotype. Patients were recruited in Iran and Italy between 2008 and 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS: WES was performed for a total of 10 subjects. All identified variants were confirmed by Sanger sequencing. Two additional affected family members were analyzed by direct Sanger sequencing. To establish the prevalence of the DNAH1 mutation identified in an Iranian family, we carried out targeted sequencing on 38 additional MMAF patients of the same geographical origin. RT-PCR and immunochemistry were performed on sperm samples to assess the effect of the identified mutation on RNA and protein. MAIN RESULTS AND THE ROLE OF CHANCE: WES in six families identified a causal mutations in two families. Two additional affected family members were confirmed to hold the same homozygous mutation as their sibling. In total, DNAH1 mutations were identified in 5 out of 12 analyzed subjects (41.7%). If we only include index cases, we detected two mutated subjects out of six (33%) tested MMAF individuals. Furthermore we sequenced one DNAH1 exon found to be mutated (c.8626-1G &gt; A) in an Iranian family in an additional 38 MMAF patients from Iran. One of these patients carried the variant confirming that this variant is relatively frequent in the Iranian population. The effect of the c.8626-1G &gt; A variant was confirmed by RT-PCR and immunochemistry as no RNA or protein could be observed in sperm from the affected men. LIMITATIONS, REASONS FOR CAUTION: WES allows the amplification of 80-90% of all coding exons. It is possible that some DNAH1 exons may not have been sequenced and that we may have missed some additional mutations. Also, WES cannot identify deep intronic mutations and it is not efficient for detection of large genomic events (deletions, insertions, inversions). We did not identify any causal mutations in DNAH1 or in other candidate genes in four out of the six tested families. This indicates that the technique and/or the analysis of our data can be improved to increase the diagnosis efficiency. WIDER IMPLICATIONS OF THE FINDINGS: Our findings confirm that DNAH1 is one of the main genes involved in MMAF syndrome. It is a large gene with 78 exons making it challenging and expensive to sequence using the traditional Sanger sequencing methods. We show that WES sequencing is good alternative to Sanger sequencing to reach a genetic diagnosis in patients with severe male infertility phenotypes

    KCNT2-Related Disorders: Phenotypes, Functional, and Pharmacological Properties

    No full text
    Objective: Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. Methods: Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. Results: The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. Interpretation: We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype–phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332–349
    • 

    corecore