2,699 research outputs found

    Tube formulas and complex dimensions of self-similar tilings

    Full text link
    We use the self-similar tilings constructed by the second author in "Canonical self-affine tilings by iterated function systems" to define a generating function for the geometry of a self-similar set in Euclidean space. This tubular zeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubular zeta function and hence develop a tube formula for self-similar tilings in \Rd\mathbb{R}^d. The resulting power series in ϵ\epsilon is a fractal extension of Steiner's classical tube formula for convex bodies K \ci \bRd. Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i=0,1,...,d−1i=0,1,...,d-1, just as Steiner's does. However, our formula also contains terms for each complex dimension. This provides further justification for the term "complex dimension". It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in "Fractal Geometry and Complex Dimensions" by the first author and Machiel van Frankenhuijsen.Comment: 41 pages, 6 figures, incorporates referee comments and references to new result

    Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators

    Get PDF
    In a previous paper by the first two authors, a tube formula for fractal sprays was obtained which also applies to a certain class of self-similar fractals. The proof of this formula uses distributional techniques and requires fairly strong conditions on the geometry of the tiling (specifically, the inner tube formula for each generator of the fractal spray is required to be polynomial). Now we extend and strengthen the tube formula by removing the conditions on the geometry of the generators, and also by giving a proof which holds pointwise, rather than distributionally. Hence, our results for fractal sprays extend to higher dimensions the pointwise tube formula for (1-dimensional) fractal strings obtained earlier by Lapidus and van Frankenhuijsen. Our pointwise tube formulas are expressed as a sum of the residues of the "tubular zeta function" of the fractal spray in Rd\mathbb{R}^d. This sum ranges over the complex dimensions of the spray, that is, over the poles of the geometric zeta function of the underlying fractal string and the integers 0,1,...,d0,1,...,d. The resulting "fractal tube formulas" are applied to the important special case of self-similar tilings, but are also illustrated in other geometrically natural situations. Our tube formulas may also be seen as fractal analogues of the classical Steiner formula.Comment: 43 pages, 13 figures. To appear: Advances in Mathematic

    Minkowski measurability results for self-similar tilings and fractals with monophase generators

    Get PDF
    In a previous paper [arXiv:1006.3807], the authors obtained tube formulas for certain fractals under rather general conditions. Based on these formulas, we give here a characterization of Minkowski measurability of a certain class of self-similar tilings and self-similar sets. Under appropriate hypotheses, self-similar tilings with simple generators (more precisely, monophase generators) are shown to be Minkowski measurable if and only if the associated scaling zeta function is of nonlattice type. Under a natural geometric condition on the tiling, the result is transferred to the associated self-similar set (i.e., the fractal itself). Also, the latter is shown to be Minkowski measurable if and only if the associated scaling zeta function is of nonlattice type.Comment: 18 pages, 1 figur

    On the Gerasimov-Drell-Hearn sum rule for the deuteron

    Full text link
    The Gerasimov-Drell-Hearn sum rule is evaluated for the deuteron by explicit integration up to 550 MeV including contributions from the photodisintegration channel and from coherent and incoherent single pion production as well. The photodisintegration channel converges fast enough in this energy range and gives a large negative contribution, essentially from the 1S0^1S_0 resonant state near threshold. Its absolute value is about the same size as the sum of proton and neutron GDH values. It is only partially cancelled by the single pion production contribution. But the incoherent channel has not reached convergence at 550 MeV.Comment: 6 pages latex including 3 postscript figures, talk at the 15th Int. Conf. on Few-Body Problems in Physics, Groningen, Netherlands, 22-26 July 1997. To be published in Nucl. Phys.

    The Long Term Stability of Oscillations During Thermonuclear X-ray Bursts: Constraining the Binary X-ray Mass Function

    Get PDF
    We report on the long term stability of the millisecond oscillations observed with the Rossi X-ray Timing Explorer (RXTE) during thermonuclear X-ray bursts from the low mass X-ray binaries (LMXB) 4U 1728-34 and 4U 1636-53. We show that bursts from 4U 1728-34 spanning more than 1.5 years have observed asymptotic oscillation periods which are within 0.2 microsec. of each other, well within the magnitude which could be produced by the orbital motion of the neutron star in a typical LMXB. This stability implies a timescale to change the oscillation period of > 23,000 years, suggesting a highly stable process such as stellar rotation as the oscillation mechanism. We show that period offsets in three distinct bursts from 4U 1636-53 can be plausibly interpreted as due to orbital motion of the neutron star in this 3.8 hour binary system. We discuss the constraints on the mass function which can in principle be derived using this technique.Comment: 11 pages, 4 figures. AASTeX, to be published in the Astrophysical Journal Letter

    Double radiative pion capture on hydrogen and deuterium and the nucleon's pion cloud

    Full text link
    We report measurements of double radiative capture in pionic hydrogen and pionic deuterium. The measurements were performed with the RMC spectrometer at the TRIUMF cyclotron by recording photon pairs from pion stops in liquid hydrogen and deuterium targets. We obtained absolute branching ratios of (3.02±0.27(stat.)±0.31(syst.))×10−5(3.02 \pm 0.27 (stat.) \pm 0.31 (syst.)) \times 10^{-5} for hydrogen and (1.42±0.120.09(stat.)±0.11(syst.))×10−5(1.42 \pm ^{0.09}_{0.12} (stat.) \pm 0.11 (syst.)) \times 10^{-5} for deuterium, and relative branching ratios of double radiative capture to single radiative capture of (7.68±0.69(stat.)±0.79(syst.))×10−5(7.68 \pm 0.69(stat.) \pm 0.79(syst.)) \times 10^{-5} for hydrogen and (5.44±0.460.34(stat.)±0.42(syst.))×10−5(5.44 \pm^{0.34}_{0.46}(stat.) \pm 0.42(syst.)) \times 10^{-5} for deuterium. For hydrogen, the measured branching ratio and photon energy-angle distributions are in fair agreement with a reaction mechanism involving the annihilation of the incident π−\pi^- on the π+\pi^+ cloud of the target proton. For deuterium, the measured branching ratio and energy-angle distributions are qualitatively consistent with simple arguments for the expected role of the spectator neutron. A comparison between our hydrogen and deuterium data and earlier beryllium and carbon data reveals substantial changes in the relative branching ratios and the energy-angle distributions and is in agreement with the expected evolution of the reaction dynamics from an annihilation process in S-state capture to a bremsstrahlung process in P-state capture. Lastly, we comment on the relevance of the double radiative process to the investigation of the charged pion polarizability and the in-medium pion field.Comment: 44 pages, 7 tables, 13 figures, submitted to Phys. Rev.

    A multifractal zeta function for cookie cutter sets

    Full text link
    Starting with the work of Lapidus and van Frankenhuysen a number of papers have introduced zeta functions as a way of capturing multifractal information. In this paper we propose a new multifractal zeta function and show that under certain conditions the abscissa of convergence yields the Hausdorff multifractal spectrum for a class of measures

    Electromagnetic Calorimeter for HADES

    Full text link
    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.Comment: 40 pages, 38 figures version2 - the time schedule added, information about PMTs in Sec.III update
    • …
    corecore