40 research outputs found

    Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea

    Get PDF
    We report on newly discovered mud volcanoes located at ∼4500 m water depth ∼90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, δ18O, δD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean

    Potential links between surging ice sheets, circulation changes and the Dansgaard Oeschger cycles in the Irminger Sea, 60-18 kyr.

    Get PDF
    Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997]. During interstadials, summer sea surface temperatures (SST<inf>su</inf>) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ∼36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SST<inf>su</inf> dropped to 2°-4°C, in phase with SSS drops by ∼1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic δ18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles

    Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan

    Get PDF
    Modern seafloor hydrothermal systems provide important insights into the formation and discovery of ancient volcanic-hosted massive sulfide (VHMS) deposits. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 drilled five sites in the Iheya North hydrothermal field in the middle Okinawa Trough back-arc basin, Japan. Hydrothermal alteration and sulfide mineralization is hosted in a geologically complex, mixed sequence of coarse pumiceous volcaniclastic and fine hemipelagic sediments, overlying a dacitic to rhyolitic volcanic substrate. At site C0016, located adjacent to the foot of the actively venting North Big Chimney massive sulfide mound, massive sphalerite-(pyrite-chalcopyrite ± galena)-rich sulfides were intersected (to 30.2% Zn, 12.3% Pb, 2.68% Cu, 33.1 ppm Ag and 0.07 ppm Au) that strongly resemble the black ore of the Miocene-age Kuroko deposits of Japan. Sulfide mineralization shows clear evidence of formation through a combination of surface detrital and subsurface chemical processes, with at least some sphalerite precipitating into void space in the rock. Volcanic rocks beneath massive sulfides exhibit quartz-muscovite/illite and quartz-Mg-chlorite alteration reminiscent of VHMS proximal footwall alteration associated with Kuroko-type deposits, characterized by increasing MgO, Fe/Zn and Cu/Zn with depth. Recovered felsic footwall rocks are of FII to FIII affinity with well-developed negative Eu anomalies, consistent with VHMS-hosting felsic rocks in Phanerozoic ensialic arc/back-arc settings worldwide. Site C0013, ∼100 m east of North Big Chimney, represents a likely location of recent high temperature discharge, preserved as surficial coarse-grained sulfidic sediments (43.2% Zn, 4.4% Pb, 5.4% Cu, 42 ppm Ag and 0.02 ppm Au) containing high concentrations of As, Cd, Mo, Sb, and W. Near surface hydrothermal alteration is dominated by kaolinite and muscovite with locally abundant native sulfur, indicative of acidic hydrothermal fluids. Alteration grades to Mg-chlorite dominated assemblages at depths of >5 mbsf (metres below sea floor). Late coarse-grained anhydrite veining overprints earlier alteration and is interpreted to have precipitated from down welling seawater as hydrothermal activity waned. At site C0014, ∼350 m farther east, hydrothermal assemblages are characterized by illite/montmorillonite, with Mg-chlorite present at depths below ∼30 mbsf. Recovered lithologies from distal, recharge site C0017 are unaltered, with low MgO, FeO and base metal concentrations. Mineralization and alteration assemblages are consistent with the Iheya North system representing a modern analogue for Kuroko-type VHMS mineralization. Fluid flow is focussed laterally along pumiceous volcaniclastic strata (compartmentalized between impermeable hemipelagic sediments), and vertically along faults. The abundance of Fe-poor sphalerite and Mg-rich chlorite (clinochlore/penninite) is consistent with the lower Fe budget, temperature and higher oxidation state of felsic volcanic-hosted hydrothermal systems worldwide compared to Mid Ocean Ridge black smoker systems

    Mineralogy and geochemistry of clay samples from active hydrothermal vents off the north coast of Iceland

    No full text
    Active hydrothermal vent sites were sampled during 1997 in a series of submersible dives at the active Grimsey (GHF) and Kolbeinsey (KHF) hydrothermal fields off the north coast of Iceland. This study focuses on secondary clay minerals which were formed in two different settings. The GHF is characterized by the presence of clay minerals precipitated within active chimneys. By contrast, the KHF is characterized by the presence of secondary clay minerals, which are the products of hydrothermal alteration of lava fragments. Based on XRD, electron microprobe and ICP-MS analyses, the dominant clay mineral in both hydrothermal fields is saponite (Mg-rich smectite). Chlorite and chlorite–smectite mixed-layer minerals also occur at the KHF. The Mg-rich nature of saponite from the GHF chimneys suggests intense Mg metasomatism in the mixing zone where hydrothermal fluids interact with seawater at temperatures of 250 °C. Saponite formation resulted in the additional uptake of Cu, Zn, and Pb. Enrichment in Ba is evident in the almost pure saponite from the KHF. Based on oxygen isotope data, the saponite formation at the KHF occurred at 148 °C, which is close to the maximum measured fluid temperature of 131 °C in this field

    The Pitcairn hotspot in the South Pacific: distribution and composition of submarine volcanic sequences

    No full text
    International audienceMultibeam bathymetry and bottom imaging (Simrad EM12D) studies on an area of about 9500 km 2 were conducted over the Pitcairn hotspot near 25°10'S, 129° 20'W. In addition, 15 dives with the Nautile submersible enabled us to obtain ground-true observations and to sample volcanic structures on the ancient ocean crust of the Farallon Plate at 3500-4300 m depths. More than 100 submarine volcanoes overprint the ancient crust and are divided according to their size into large (>2000 m in height), intermediate (500-2000 m high) and small (3 within a radius of about 110 km. The most recent volcanic activities occur on both small and large edifices composed of a great variety of lava flows. These flows vary in composition, following a succession from picritic basalt to alkali basalt, trachybasalt, trachy-andesite and to trachyte. Their large range of SiO 2 (48-62%), Na 2O+K 2O (2-11%), Ba (300-1300 ppm), MgO (1-11%), Nb (19-130 ppm), Ni (4-400 ppm) and rare earth elements suggests that crystal-liquid fractionation from basanite and/or picritic melt sources was a major process. The variation in composition between the least evolved basaltic rocks and the other more evolved silicic lava is marked by a difference in their flow morphology (pillow, giant tubes, tabular to blocky flows). The lava composition and field observation indicate that several magmatic pulses giving rise to cyclic eruptions are responsible for the construction of the edifices. The two larger edifices (>2000 m high) show more extensive eruptive events and a wider range in compositional variability than the smaller (2>53%) flows consisting essentially of alternating sequences of trachy-andesite and trachyte. The distribution and composition of the small edifices suggest that they are the result of sub-crustal forceful magma injection and channeling supplied from reservoirs associated with the large volcanoes
    corecore