181 research outputs found
Attosecond Control of Ionization Dynamics
Attosecond pulses can be used to initiate and control electron dynamics on a
sub-femtosecond time scale. The first step in this process occurs when an atom
absorbs an ultraviolet photon leading to the formation of an attosecond
electron wave packet (EWP). Until now, attosecond pulses have been used to
create free EWPs in the continuum, where they quickly disperse. In this paper
we use a train of attosecond pulses, synchronized to an infrared (IR) laser
field, to create a series of EWPs that are below the ionization threshold in
helium. We show that the ionization probability then becomes a function of the
delay between the IR and attosecond fields. Calculations that reproduce the
experimental results demonstrate that this ionization control results from
interference between transiently bound EWPs created by different pulses in the
train. In this way, we are able to observe, for the first time, wave packet
interference in a strongly driven atomic system.Comment: 8 pages, 4 figure
Differences in measures of the fiscal multiplier and the reduced-form vector autoregression
The literature has recently asked whether the effects of fiscal policy vary with the state of the economy (Christiano, Eichenbaum, and Rebelo 2011; Rendahl 2014; Auerbach and Gorodnichenko 2012). We study this question in the context of vector autoregression (VAR) estimation. We show formally that, if (asymptotically) the parameters of the reduced-form VAR differ, then the dynamic effects of fiscal policy differ as well, generically and for any set of identification assumptions. Thus, in theory, the econometrician can detect these differences (either across time or space) generically just by relying on reduced-form VAR estimation
Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope
The basic properties of atoms, molecules and solids are governed by electron
dynamics which take place on extremely short time scales. To measure and
control these dynamics therefore requires ultrafast sources of radiation
combined with efficient detection techniques. The generation of extreme
ultraviolet (XUV) attosecond (1 as = 10-18 s) pulses has, for the first time,
made direct measurements of electron dynamics possible. Nevertheless, while
various applications of attosecond pulses have been demonstrated
experimentally, no one has yet captured or controlled the full three
dimensional motion of an electron on an attosecond time scale. Here we
demonstrate an attosecond quantum stroboscope capable of guiding and imaging
electron motion on a sub-femtosecond (1 fs = 10-15 s) time scale. It is based
on a sequence of identical attosecond pulses which are synchronized with a
guiding laser field. The pulse to pulse separation in the train is tailored to
exactly match an optical cycle of the laser field and the electron momentum
distributions are detected with a velocity map imaging spectrometer (VMIS).
This technique has enabled us to guide ionized electrons back to their parent
ion and image the scattering event. We envision that coherent electron
scattering from atoms, molecules and surfaces captured by the attosecond
quantum stroboscope will complement more traditional scattering techniques
since it provides high temporal as well as spatial resolution.Comment: 6 pages, 4 figure
Attosecond electron spectroscopy using a novel interferometric pump-probe technique
We present an interferometric pump-probe technique for the characterization
of attosecond electron wave packets (WPs) that uses a free WP as a reference to
measure a bound WP. We demonstrate our method by exciting helium atoms using an
attosecond pulse with a bandwidth centered near the ionization threshold, thus
creating both a bound and a free WP simultaneously. After a variable delay, the
bound WP is ionized by a few-cycle infrared laser precisely synchronized to the
original attosecond pulse. By measuring the delay-dependent photoelectron
spectrum we obtain an interferogram that contains both quantum beats as well as
multi-path interference. Analysis of the interferogram allows us to determine
the bound WP components with a spectral resolution much better than the inverse
of the attosecond pulse duration.Comment: 5 pages, 4 figure
Non-sequential triple ionization in strong fields
We consider the final stage of triple ionization of atoms in a strong
linearly polarized laser field. We propose that for intensities below the
saturation value for triple ionization the process is dominated by the
simultaneous escape of three electrons from a highly excited intermediate
complex. We identify within a classical model two pathways to triple
ionization, one with a triangular configuration of electrons and one with a
more linear one. Both are saddles in phase space. A stability analysis
indicates that the triangular configuration has the larger cross sections and
should be the dominant one. Trajectory simulations within the dominant symmetry
subspace reproduce the experimentally observed distribution of ion momenta
parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Generation of ultra-short light pulses by a rapidly ionizing thin foil
A thin and dense plasma layer is created when a sufficiently strong laser
pulse impinges on a solid target. The nonlinearity introduced by the
time-dependent electron density leads to the generation of harmonics. The pulse
duration of the harmonic radiation is related to the risetime of the electron
density and thus can be affected by the shape of the incident pulse and its
peak field strength. Results are presented from numerical
particle-in-cell-simulations of an intense laser pulse interacting with a thin
foil target. An analytical model which shows how the harmonics are created is
introduced. The proposed scheme might be a promising way towards the generation
of attosecond pulses.
PACS number(s): 52.40.Nk, 52.50.Jm, 52.65.RrComment: Second Revised Version, 13 pages (REVTeX), 3 figures in ps-format,
submitted for publication to Physical Review E, WWW:
http://www.physik.tu-darmstadt.de/tqe
Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines
We investigate the self-phase modulation of intense femtosecond laser pulses
propagating in an ionizing gas and its effects on collective properties of
high-order harmonics generated in the medium. Plasmas produced in the medium
are shown to induce a positive frequency chirp on the leading edge of the
propagating laser pulse, which subsequently drives high harmonics to become
positively chirped. In certain parameter regimes, the plasma-induced positive
chirp can help to generate sharply peaked high harmonics, by compensating for
the dynamically-induced negative chirp that is caused by the steep intensity
profile of intense short laser pulses.Comment: 5 pages, 5 figure
XUV digital in-line holography using high-order harmonics
A step towards a successful implementation of timeresolved digital in-line
holography with extreme ultraviolet radiation is presented. Ultrashort XUV
pulses are produced as high-order harmonics of a femtosecond laser and a
Schwarzschild objective is used to focus harmonic radiation at 38 nm and to
produce a strongly divergent reference beam for holographic recording.
Experimental holograms of thin wires are recorded and the objects
reconstructed. Descriptions of the simulation and reconstruction theory and
algorithms are also given. Spatial resolution of few hundreds of nm is
potentially achievable, and micrometer resolution range is demonstrated.Comment: 8 pages, 8 figure
- …