24 research outputs found
Does Greater Low Frequency EEG Activity in Normal Immaturity and in Children with Epilepsy Arise in the Same Neuronal Network?
Greater low frequency power (<8Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1-3Hz, theta: 4-7Hz), medium (alpha: 8-12Hz) and high (beta: 13-25Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal networ
Ecofriendly Perovskites with Giant Self-Defocusing Optical Response
[EN] The full optical control of light using sustainable green technologies is one of the incipient challenges of the Photonics community. There are, however, few optical materials able to provide a significant nonlinear refractive index change under small enough intensities (< 1 GW cm(-2)), and, more importantly, allowing the external control of the magnitude and sign of their nonlinear response. This manuscript demonstrates that Cs2SnI6 lead-free nanocrystals (NCs) present an extraordinary self-defocusing response not yet observed up to now in any material. Despite its complex structural form, these NCs are fully characterized here, both experimentally and theoretically, revealing a giant negative refractive change Delta n = -0.05 under proper illumination conditions. The nonlinear response is tuned with the intensity, concentration of NCs in the solvent, and propagation distance leading to a crossover where the media transforms to self-focusing with Delta n = +0.002. These results can provide fascinating opportunities in sensing and light-matter interactions for a future ecofriendly photonic technology.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 862656 (project DROP-IT) and by the Spanish MICINN through project no. PID2020-120484RB-I00 and by Generalitat Valenciana PROMETEO/2021/082.Suárez, I.; Martinez-Pastor, JP.; Oszajca, MF.; Lüchinger, NA.; Graves, B.; Agouram, S.; Milián Enrique, C.... (2022). Ecofriendly Perovskites with Giant Self-Defocusing Optical Response. Advanced Optical Materials. https://doi.org/10.1002/adom.20220212
Frontal GABA Levels Change during Working Memory
Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing
Don de rein altruiste: enjeux psychologiques [Altruistic kidney deviation: psychological challenges].
Altruistic kidney donation challenges ethical principles, questions the anthropological meaning of donation and is associated with important psychological aspects. Obtaining free and informed consent is essential and requires a depth evaluation by a psychologist or a psychiatrist in order to identify the motivations which stimulate the desire of donation. By means of a psychodynamic understanding of a clinical case, we illustrate the complexity of the evaluation of consent and discuss the psychological issues associated with altruistic kidney donation
Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands.
BACKGROUND: EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown. METHODOLOGY: In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5-7 Hz), alpha1 (8-10), alpha2 (10-12 Hz), beta1 (13-20), beta2 (20-30 Hz), and gamma (30-40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects. PRINCIPAL FINDINGS: We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and--with one exception--beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects. CONCLUSIONS: We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM
Frontal GABA levels change during working memory.
Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing
Coupling between resting cerebral perfusion and EEG.
While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21-48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2-4 Hz and theta: 4-7 Hz), middle (alpha: 8-13 Hz), and high (beta: 13-30 Hz and gamma: 30-45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation