43 research outputs found

    Electromagnetic Field in Higher-Dimensional Black-Hole Spacetimes

    Full text link
    A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(A)dS black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational back reaction of such a field cannot be consistently solved.Comment: 8 pages, no figures; presented at the Black hole VI conference in White Point, Canada, May 12-16 2007, and at the GRG18 conference in Sydney, Australia, July 8-13 200

    Gravitational and electromagnetic fields near an anti-de Sitter-like infinity

    Full text link
    We analyze asymptotic structure of general gravitational and electromagnetic fields near an anti-de Sitter-like conformal infinity. Dependence of the radiative component of the fields on a null direction along which the infinity is approached is obtained. The directional pattern of outgoing and ingoing radiation, which supplements standard peeling property, is determined by the algebraic (Petrov) type of the fields and also by orientation of principal null directions with respect to the timelike infinity. The dependence on the orientation is a new feature if compared to spacelike infinity.Comment: 4 pages, 2 figure

    Asymptotic structure of radiation in higher dimensions

    Full text link
    We characterize a general gravitational field near conformal infinity (null, spacelike, or timelike) in spacetimes of any dimension. This is based on an explicit evaluation of the dependence of the radiative component of the Weyl tensor on the null direction from which infinity is approached. The behaviour similar to peeling property is recovered, and it is shown that the directional structure of radiation has a universal character that is determined by the algebraic type of the spacetime. This is a natural generalization of analogous results obtained previously in the four-dimensional case.Comment: 14 pages, no figures (two references added

    Hidden Symmetries of Higher Dimensional Black Holes and Uniqueness of the Kerr-NUT-(A)dS spacetime

    Full text link
    We prove that the most general solution of the Einstein equations with the cosmological constant which admits a principal conformal Killing-Yano tensor is the Kerr-NUT-(A)dS metric. Even when the Einstein equations are not imposed, any spacetime admitting such hidden symmetry can be written in a canonical form which guarantees the following properties: it is of the Petrov type D, it allows the separation of variables for the Hamilton-Jacobi, Klein-Gordon, and Dirac equations, the geodesic motion in such a spacetime is completely integrable. These results naturally generalize the results obtained earlier in four dimensions.Comment: 5 pages, no figure

    Closed conformal Killing-Yano tensor and geodesic integrability

    Full text link
    Assuming the existence of a single rank-2 closed conformal Killing-Yano tensor with a certain symmetry we show that there exist mutually commuting rank-2 Killing tensors and Killing vectors. We also discuss the condition of separation of variables for the geodesic Hamilton-Jacobi equations.Comment: 17 pages, no figure, LaTe

    Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.

    Get PDF
    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.be equally used in those circumstances. V. F. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Killam Trust for their financial support. P. K. is supported by Czech Science Foundation Grant No. 17-01625S. D. K. acknowledges the Perimeter Institute for Theoretical Physics and the NSERC for their support. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science. J. E. S. is supported in part by STFC Grants No. PHY-1504541 and No. ST/P000681/1

    Parallel-propagated frame along null geodesics in higher-dimensional black hole spacetimes

    Full text link
    In [arXiv:0803.3259] the equations describing the parallel transport of orthonormal frames along timelike (spacelike) geodesics in a spacetime admitting a non-degenerate principal conformal Killing-Yano 2-form h were solved. The construction employed is based on studying the Darboux subspaces of the 2-form F obtained as a projection of h along the geodesic trajectory. In this paper we demonstrate that, although slightly modified, a similar construction is possible also in the case of null geodesics. In particular, we explicitly construct the parallel-transported frames along null geodesics in D=4,5,6 Kerr-NUT-(A)dS spacetimes. We further discuss the parallel transport along principal null directions in these spacetimes. Such directions coincide with the eigenvectors of the principal conformal Killing-Yano tensor. Finally, we show how to obtain a parallel-transported frame along null geodesics in the background of the 4D Plebanski-Demianski metric which admits only a conformal generalization of the Killing-Yano tensor.Comment: 17 pages, no figure

    Radiation generated by accelerating and rotating charged black holes in (anti-)de Sitter space

    Full text link
    Asymptotic behaviour of gravitational and electromagnetic fields of exact type D solutions from the large Plebanski-Demianski family of black hole spacetimes is analyzed. The amplitude and directional structure of radiation is evaluated in cases when the cosmological constant is non-vanishing, so that the conformal infinities have either de Sitter-like or anti-de Sitter-like character. In particular, explicit relations between the parameters that characterize the sources (that is their mass, electric and magnetic charges, NUT parameter, rotational parameter, and acceleration) and properties of the radiation generated by them are presented. The results further elucidate the physical interpretation of these solutions and may help to understand radiative characteristics of more general spacetimes than those that are asymptotically flat.Comment: 24 pages, 18 figures. To appear in Classical and Quantum Gravit
    corecore