3 research outputs found

    Local density of states in superconductor-strong ferromagnet structures

    Full text link
    We study the dependence of the local density of states (LDOS) on coordinates for a superconductor-ferromagnet (S/F) bilayer and a S/F/S structure assuming that the exchange energy h in the ferromagnet is sufficiently large: >>1,% h\tau >>1, where τ\tau is the elastic relaxation time. This limit cannot be described by the Usadel equation and we solve the more general Eilenberger equation. We demonstrate that, in the main approximation in the parameter (hτ)−1% (h\tau)^{-1}, the proximity effect does not lead to a modification of the LDOS in the S/F system and a non-trivial dependence on coordinates shows up in next orders in (hτ)−1.(h\tau) ^{-1}. In the S/F/S sandwich the correction to the LDOS is nonzero in the main approximation and depends on the phase difference between the superconductors. We also calculate the superconducting critical temperature TcT_{c} for the bilayered system and show that it does not depend on the exchange energy of the ferromagnet in the limit of large h and a thick F layer.Comment: 9 pages, 5 figure

    Absence of the Transition into Abrikosov Vortex State of Two-Dimensional Type-II Superconductor with Weak Pinning

    Full text link
    The resistive properties of thin amorphous NbO_{x} films with weak pinning were investigated experimentally above and below the second critical field H_{c2}. As opposed to bulk type II superconductors with weak pinning where a sharp change of resistive properties at the transition into the Abrikosov state is observed at H_{c4}, some percent below H_{c2} (V.A.Marchenko and A.V.Nikulov, 1981), no qualitative change of resistive properties is observed down to a very low magnetic field, H_{c4} < 0.006 H_{c2}, in thin films with weak pinning. The smooth dependencies of the resistivity observed in these films can be described by paraconductivity theory both above and below H_{c2}. This means that the fluctuation superconducting state without phase coherence remains appreciably below H_{c2} in the two-dimensional superconductor with weak pinning. The difference the H_{c4}/H_{c2} values, i.e. position of the transition into the Abrikosov state, in three- and two-dimensional superconductors conforms to the Maki-Takayama result 1971 year according to which the Abrikosov solution 1957 year is valid only for a superconductor with finite dimensions. Because of the fluctuation this solution obtained in the mean field approximation is not valid in a relatively narrow region below H_{c2} for bulk superconductors with real dimensions and much below H_{c2} for thin films with real dimensions. The superconducting state without phase coherence should not be identified with the mythical vortex liquid because the vortex, as a singularity in superconducting state with phase coherence, can not exist without phase coherence.Comment: 4 pages, 4 figure
    corecore