5 research outputs found

    Reduction of a detailed chemical mechanism for a kerosene surrogate via RCCE-CSP

    Get PDF
    Detailed mechanisms for kerosene surrogate fuels contain hundreds of species and thousands of reactions, indicating a necessity for reduced mechanisms. In this work, we employ a framework that combines Rate-Controlled Constrained Equilibrium (RCCE) with Computational Singular Perturbation (CSP) for systematic reduction based on timescale analysis, to reduce a detailed mechanism for a jet fuel surrogate with n-dodecane, methylcyclohexane and m-xylene. Laminar non-premixed flamelets are utilised for the CSP analysis for different strain rates and therefore different scalar dissipation rate, covering the flammable region of strain rates for the surrogate fuel. Two RCCE-reduced mechanisms are developed via an RCCE-CSP methodology, one with 17 and one with 42 species, and their accuracy is assessed in a range of cases that test the performance of the reduced mechanism under both non-premixed and premixed conditions and its dynamic response. These include non-premixed flamelets with varying strain rate, laminar premixed flames for a range of equivalence ratios and pressures, flamelets ignited by an artificial pilot or by hot air, and unsteady flamelets with time-dependent strain rate. The profiles of both major and minor species, as well as important combustion characteristics such as the ignition strain rate and the laminar flame speed, are investigated. The structure of non-premixed flamelets is very well predicted, while the premixed flames are overall well predicted apart from a few deviations in certain species and an underprediction in the laminar flame speed. Apart from the large reduction in dimensionality, the reduction in computational time is also considerable (up to 19 times). As the detailed mechanism comprises 367 species and 1892 reactions, this paper presents the first application of RCCE to a mechanism of this size, as well as a comprehensive validation in a set of cases that include non-premixed and premixed laminar flames, atmospheric and elevated pressures and steady-state and dynamic response

    A methodology for derivation of RCCE-reduced mechanisms via CSP

    No full text
    The development of reduced chemical mechanisms in a systematic way has emerged as a potential solution to the problem of incorporating the increasingly large chemical mechanisms into turbulent combustion CFD codes. In this work, a methodology is proposed for developing reduced mechanisms with Rate-Controlled Constrained Equilibrium (RCCE) via a Computational Singular Perturbation (CSP) analysis of counterflow non-premixed flamelets. An ordering of species for variable strain rates is derived by integrating over mixture fraction space a modified CSP pointer that depends on the timescale and mass fraction of each chemical species. Subsequently, a global set of kinetically controlled species is identified from weighting the local ordering for each strain rate. RCCE simulations with the derived reduced mechanisms for methane with 16 species and for propane with 27 species are compared with the integration of the detailed mechanisms GRI 1.2 and USC-Mech-II respectively. The applicability of the methodology is demonstrated in non-premixed flames for several strain rates, in non-premixed flames ignited with a pilot in order to test the dynamics and ignition of the reduced schemes, in premixed flames for different equivalence ratios and subsequently in perfectly stirred reactors for ignition delay times for varying temperature, pressure and equivalence ratio. Overall very good agreement is obtained, indicating that the methodology can produce reliable mechanisms for different fuels and for a wide range of conditions, including dynamical behaviour and conditions different from those employed for the derivation of the mechanism
    corecore