1,713 research outputs found
k-Tuple_Total_Domination_in_Inflated_Graphs
The inflated graph of a graph with vertices is obtained
from by replacing every vertex of degree of by a clique, which is
isomorph to the complete graph , and each edge of is
replaced by an edge in such a way that , , and
two different edges of are replaced by non-adjacent edges of . For
integer , the -tuple total domination number of is the minimum cardinality of a -tuple total dominating set
of , which is a set of vertices in such that every vertex of is
adjacent to at least vertices in it. For existing this number, must the
minimum degree of is at least . Here, we study the -tuple total
domination number in inflated graphs when . First we prove that
, and then we
characterize graphs that the -tuple total domination number number of
is or . Then we find bounds for this number in the
inflated graph , when has a cut-edge or cut-vertex , in terms
on the -tuple total domination number of the inflated graphs of the
components of or -components of , respectively. Finally, we
calculate this number in the inflated graphs that have obtained by some of the
known graphs
- β¦