15,623 research outputs found

    Interwoven Leadership: the Missing Link in Multi-Agency Major Incident Response

    Get PDF
    This paper reports on research into the effectiveness of strategic commanders and their multi-agency teams in response to major incidents. It is argued that current models of crisis leadership fail to establish a balance between the requirement for task skills,interpersonal skills, stakeholder awareness and personal qualities of commanders and their teams. The paper sets out a theoretical model for interwoven leadership combining these features

    On the origin of radio core emission in radio-quiet quasars

    Full text link
    We present a model for the radio emission from radio-quiet quasar nuclei. We show that a thermal origin for the high brightness temperature, flat spectrum point sources (known as radio ``cores'') is possible provided the emitting region is hot and optically-thin. We hence demonstrate that optically-thin bremsstrahlung from a slow, dense disk wind can make a significant contribution to the observed levels of radio core emission. This is a much more satisfactory explanation, particularly for sources where there is no evidence of a jet, than a sequence of self-absorbed synchrotron components which collectively conspire to give a flat spectrum. Furthermore, such core phenomena are already observed directly via milli-arcsecond radio imaging of the Galactic microquasar SS433 and the active galaxy NGC1068. We contend that radio-emitting disk winds must be operating at some level in radio-loud quasars and radio galaxies as well (although in these cases, observations of the radio cores are frequently contaminated/dominated by synchrotron emission from jet knots). This interpretation of radio core emission mandates mass accretion rates that are substantially higher than Eddington. Moreover, acknowledgment of this mass-loss mechanism as an AGN feedback process has important implications for the input of energy and hot gas into the inter-galactic medium (IGM) since it is considerably less directional than that from jets.Comment: to appear in ApJ Letters (4 pages

    Annual fecundity, batch fecundity, and oocyte atresia of Atka mackerel (Pleurogrammus monopterygius) in Alaskan waters

    Get PDF
    Annual potential fecundity, batch fecundity, and oocyte atresia were estimated for Atka mackerel (Pleurogrammus monopterygius) collected in Alaskan waters during 1993−94. Atka mackerel were assumed to be determinate spawners on the basis of decreasing fecundity after batch spawning events. Histological examination of the ovaries indicated that oocytes in the vitellogenic stage and higher had been spawned in the current spawning season. For an average female of 40 cm, potential annual fecundity was estimated to be 41,994 eggs, average batch size (i.e., batch fecundity) was estimated to be 6689 eggs, and there were 6.13 batches per spawning season. Atresia was estimated by examining postspawning specimens and was found to be substantial. The average amount of atresia for a 40-cm fish was estimated to be 11,329 eggs, resulting in an estimated realized fecundity of only 30,664 eggs and 4.64 batches of eggs per spawning season

    Kinetics and mechanism of the reaction between atomic chlorine and dimethyl selenide; comparison with the reaction between atomic chlorine and dimethyl sulfide

    Get PDF
    Dimethyl selenide is the most abundant gaseous selenium species in marine environments. In this work, the value of the rate coefficient for the gas-phase reaction between dimethyl selenide and Cl atoms has been determined for the first time. The value of the second-order rate coefficient obtained was (5.0±1.4)×10–10 cm3 molecule–1 s–1. The very fast nature of the reaction means that, when estimating the lifetime of dimethyl selenide in the atmosphere, loss due to reaction with Cl atoms should be considered along with loss due to reaction with O3 and with OH and NO3 radicals. Analysis of the available kinetic data suggests that at 760 Torr the dominant reaction pathway for the reaction of Cl atoms with dimethyl selenide will be the addition of Cl to the Se atom forming an adduct of the type CH3Se(Cl)CH3. Theoretical calculations, at the B3LYP/6-311++G(2df,p)//B3LYP/6-311++G(d,p) level of theory, show that at 298 K the value of rH for the formation of the adduct is –111.4 kJ mol–1. This value may be compared to –97.0 kJ mol–1, the value calculated for rH for the formation of the analogous sulfur adduct, CH3S(Cl)CH3, following the reaction between Cl atoms and dimethyl sulfide. Variational RRKM theory was used to predict the thermal decomposition rates of the two adducts back to starting materials. The estimated rate constant for the decomposition of the selenium adduct to the reactants is 5×10–5 s–1, compared to 0.02 s–1 in the case of the sulfur adduct. However, our calculations suggest that the CH3Se(Cl)CH3 adduct, which is initially formed highly excited, will not be stabilised under atmospheric conditions, but rather will decompose to yield CH3SeCl and CH3, a process that is calculated to be exothermic with respect to the initial reactants by 5.8 kJ mol–1. The formation of CH3SCl and CH3 from the sulfur adduct, on the other hand, is endothermic by 20.8 kJ mol–1 with respect to the initial reactants, and is thus not expected to occur
    • 

    corecore