358 research outputs found
Calculating Colimits Compositionally
We show how finite limits and colimits can be calculated compositionally
using the algebras of spans and cospans, and give as an application a proof of
the Kleene Theorem on regular languages
Random quantum channels I: graphical calculus and the Bell state phenomenon
This paper is the first of a series where we study quantum channels from the
random matrix point of view. We develop a graphical tool that allows us to
compute the expected moments of the output of a random quantum channel. As an
application, we study variations of random matrix models introduced by Hayden
\cite{hayden}, and show that their eigenvalues converge almost surely. In
particular we obtain for some models sharp improvements on the value of the
largest eigenvalue, and this is shown in a further work to have new
applications to minimal output entropy inequalities.Comment: Several typos were correcte
Virtual reality as a screening tool for sports concussion in adolescents
PRIMARY OBJECTIVE: There is controversy surrounding the cognitive effects of sports concussion. This study aimed to verify whether the technique of virtual reality could aid in the identification of attention and inhibition deficits in adolescents.
STUDY DESIGN: A prospective design was used to assess 25 sports-concussed and 25 non-sports-concussed adolescents enrolled in a sport and education programme.
METHODS AND PROCEDURES: Participants were evaluated in immersive virtual reality via ClinicaVR: Classroom-CPT and in real life via the traditional VIGIL-CPT.
MAIN OUTCOMES AND RESULTS: The neuropsychological assessment using virtual reality showed greater sensitivity to the subtle effects of sports concussion compared to the traditional test, which showed no difference between groups. The results also demonstrated that the sports concussion group reported more symptoms of cybersickness and more intense cybersickness than the control group.
CONCLUSIONS: Sports concussion was associated with subtle deficits in attention and inhibition. However, further studies are needed to support these results
Nets, relations and linking diagrams
In recent work, the author and others have studied compositional algebras of
Petri nets. Here we consider mathematical aspects of the pure linking algebras
that underly them. We characterise composition of nets without places as the
composition of spans over appropriate categories of relations, and study the
underlying algebraic structures.Comment: 15 pages, Proceedings of 5th Conference on Algebra and Coalgebra in
Computer Science (CALCO), Warsaw, Poland, 3-6 September 201
Equational reasoning with context-free families of string diagrams
String diagrams provide an intuitive language for expressing networks of
interacting processes graphically. A discrete representation of string
diagrams, called string graphs, allows for mechanised equational reasoning by
double-pushout rewriting. However, one often wishes to express not just single
equations, but entire families of equations between diagrams of arbitrary size.
To do this we define a class of context-free grammars, called B-ESG grammars,
that are suitable for defining entire families of string graphs, and crucially,
of string graph rewrite rules. We show that the language-membership and
match-enumeration problems are decidable for these grammars, and hence that
there is an algorithm for rewriting string graphs according to B-ESG rewrite
patterns. We also show that it is possible to reason at the level of grammars
by providing a simple method for transforming a grammar by string graph
rewriting, and showing admissibility of the induced B-ESG rewrite pattern.Comment: International Conference on Graph Transformation, ICGT 2015. The
final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-21145-9_
Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution
Metaiodobenzylguanidine (MIBG) is an enzymatically stable synthetic analog of norepinephrine that when radiolabled with diagnostic ((123)I) or therapeutic ((131)I) isotopes has been shown to concentrate highly in sympathetically innervated tissues such as the heart and neuroendocrine tumors that possesses high levels of norepinephrine transporter (NET). As the transport of MIBG by NET is a saturable event, the specific activity of the preparation may have dramatic effects on both the efficacy and safety of the radiodiagnostic/radiotherapeutic. Using a solid labeling approach (Ultratrace), noncarrier-added radiolabeled MIBG can be efficiently produced. In this study, specific activities of >1200 mCi/micromol for (123)I and >1600 mCi/micromol for (131)I have been achieved. A series of studies were performed to assess the impact of cold carrier MIBG on the tissue distribution of (123/131)I-MIBG in the conscious rat and on cardiovascular parameters in the conscious instrumented dog. The present series of studies demonstrated that the carrier-free Ultratrace MIBG radiolabeled with either (123)I or (131)I exhibited similar tissue distribution to the carrier-added radiolabeled MIBG in all nontarget tissues. In tissues that express NETs, the higher the specific activity of the preparation the greater will be the radiopharmaceutical uptake. This was reflected by greater efficacy in the mouse neuroblastoma SK-N-BE(2c) xenograft model and less appreciable cardiovascular side-effects in dogs when the high-specific-activity radiopharmaceutical was used. The increased uptake and retention of Ultratrace (123/131)I-MIBG may translate into a superior diagnostic and therapeutic potential. Lastly, care must be taken when administering therapeutic doses of the current carrier-added (131)I-MIBG because of its potential to cause adverse cardiovascular side-effects, nausea, and vomiting
Environment and classical channels in categorical quantum mechanics
We present a both simple and comprehensive graphical calculus for quantum
computing. In particular, we axiomatize the notion of an environment, which
together with the earlier introduced axiomatic notion of classical structure
enables us to define classical channels, quantum measurements and classical
control. If we moreover adjoin the earlier introduced axiomatic notion of
complementarity, we obtain sufficient structural power for constructive
representation and correctness derivation of typical quantum informatic
protocols.Comment: 26 pages, many pics; this third version has substantially more
explanations than previous ones; Journal reference is of short 14 page
version; Proceedings of the 19th EACSL Annual Conference on Computer Science
Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010
The Gelfand spectrum of a noncommutative C*-algebra: a topos-theoretic approach
We compare two influential ways of defining a generalized notion of space.
The first, inspired by Gelfand duality, states that the category of
'noncommutative spaces' is the opposite of the category of C*-algebras. The
second, loosely generalizing Stone duality, maintains that the category of
'pointfree spaces' is the opposite of the category of frames (i.e., complete
lattices in which the meet distributes over arbitrary joins). One possible
relationship between these two notions of space was unearthed by Banaschewski
and Mulvey, who proved a constructive version of Gelfand duality in which the
Gelfand spectrum of a commutative C*-algebra comes out as a pointfree space.
Being constructive, this result applies in arbitrary toposes (with natural
numbers objects, so that internal C*-algebras can be defined). Earlier work by
the first three authors, shows how a noncommutative C*-algebra gives rise to a
commutative one internal to a certain sheaf topos. The latter, then, has a
constructive Gelfand spectrum, also internal to the topos in question. After a
brief review of this work, we compute the so-called external description of
this internal spectrum, which in principle is a fibered pointfree space in the
familiar topos Sets of sets and functions. However, we obtain the external
spectrum as a fibered topological space in the usual sense. This leads to an
explicit Gelfand transform, as well as to a topological reinterpretation of the
Kochen-Specker Theorem of quantum mechanics, which supplements the remarkable
topos-theoretic version of this theorem due to Butterfield and Isham.Comment: 12 page
A Physicist's Proof of the Lagrange-Good Multivariable Inversion Formula
We provide yet another proof of the classical Lagrange-Good multivariable
inversion formula using techniques of quantum field theory.Comment: 9 pages, 3 diagram
Clinico-laboratory profile of dengue patients in a tertiary hospital of Eastern India
Background: Dengue is the most rapidly spreading mosquito-borne viral disease of mankind. According to WHO, about 50-100 million new dengue infections are estimated to occur annually in more than 100 endemic countries.So, the present study has been done to analyzed varied clinical and laboratory profile of confirm dengue cases.Methods: Cross-sectional observational study was undertaken among 106 adult Ig M Ab positive cases admitted during October 2015 to September 2017. All patients were evaluated clinically and subjected for relevant laboratory investigations.Results: In our study male and female ratio was 20.2:1. Most common symptom was fever (95.3%) and least common was jaundice. Second most symptom was headache (70.8%). Myalgia was present in 49.1% of cases. 54.7% had nausea/vomiting. Hypotension was noticed in 33% of cases whereas encephalopathy and melaena was found in 6.6% and 2.83% respectively. Leucopenia was present in 57.5% and thrombocytopenia in 50.9% of cases.Conclusions: Younger male were commonly affected with dengue fever and promptly responded to conservative therapy due to early confirmation of diagnosis. Mortality was only 1.8% cases, may be due to delay in seeking medical attention
- …