1,759 research outputs found
Collapsar Jets, Bubbles and Fe Lines
In the collapsar scenario, gamma ray bursts are caused by relativistic jets
expelled along the rotation axis of a collapsing stellar core. We discuss how
the structure and time-dependence of such jets depends on the stellar envelope
and central engine properties, assuming a steady jet injection. It takes a few
seconds for the jet to bore its way through the stellar core; most of the
energy output during that period goes into a cocoon of relativistic plasma
surrounding the jet. This material subsequently forms a bubble of magnetized
plasma that takes several hours to expand, subrelativistically, through the
envelope of a high-mass supergiant. Jet break-through and a conventional burst
would be expected not only in He stars but possibly also in blue supergiants.
Shock waves and magnetic dissipation in the escaping bubble can contribute a
non thermal UV/X-ray afterglow, and also excite Fe line emission from thermal
gas, in addition to the standard jet deceleration power-law afterglow.Comment: Ap.J. Letters, accepted 6/20/01, first subm 4/24/01; aaspp4, 9 pages,
no figures; minor revision
Asymmetry of jets, lobe size and spectral index in radio galaxies and quasars
We investigate the correlations between spectral index, jet side and extent
of the radio lobes for a sample of nearby FRII radio galaxies. In
Dennett-Thorpe et al. (1997) we studied a sample of quasars and found that the
high surface brightness regions had flatter spectra on the jet side (explicable
as a result of Doppler beaming) whilst the extended regions had spectral
asymmetries dependent on lobe length. Unified schemes predict that asymmetries
due to beaming will be much smaller in narrow-line radio galaxies than in
quasars: we therefore investigate in a similar manner, a sample of radio
galaxies with detected jets. We find that spectral asymmetries in these objects
are uncorrelated with jet sidedness at all brightness levels, but depend on
relative lobe volume. Our results are not in conflict with unified schemes, but
suggest that the differences between the two samples are due primarily to power
or redshift, rather than to orientation. We also show directly that hotspot
spectra steepen as a function of radio power or redshift. Whilst a shift in
observed frequency due to the redshift may account for some of the steepening,
it cannot account for all of it, and a dependence on radio power is required.Comment: accepted for publication in MNRAS, 10 pages; typos/minor correctio
Radiative Efficiencies of Continuously Powered Blast Waves
We use general arguments to show that a continuously powered radiative blast
wave can behave self similarly if the energy injection and radiation mechanisms
are self similar. In that case, the power-law indices of the blast wave
evolution are set by only one of the two constituent physical mechanisms. If
the luminosity of the energy source drops fast enough, the radiation mechanisms
set the power-law indices, otherwise, they are set by the behavior of the
energy source itself. We obtain self similar solutions for the Newtonian and
the ultra-relativistic limits. Both limits behave self similarly if we assume
that the central source supplies energy in the form of a hot wind, and that the
radiative mechanism is the semi-radiative mechanism of Cohen, Piran & Sari
(1998). We calculate the instantaneous radiative efficiencies for both limits
and find that a relativistic blast wave has a higher efficiency than a
Newtonian one. The instantaneous radiative efficiency depends strongly on the
hydrodynamics and cannot be approximated by an estimate of local microscopic
radiative efficiencies, since a fraction of the injected energy is deposited in
shocked matter. These solutions can be used to calculate Gamma Ray Bursts
afterglows, for cases in which the energy is not supplied instantaneously.Comment: 28 LaTeX pages, including 9 figures and 3 table
Warped discs and the directional stability of jets in Active Galactic Nuclei
Warped accretion discs in Active Galactic Nuclei (AGN) exert a torque on the
black hole that tends to align the rotation axis with the angular momentum of
the outer disc. We compute the magnitude of this torque by solving numerically
for the steady state shape of the warped disc, and verify that the analytic
solution of Scheuer and Feiler (1996) provides an excellent approximation. We
generalise these results for discs with strong warps and arbitrary surface
density profiles, and calculate the timescale on which the black hole becomes
aligned with the angular momentum in the outer disc. For massive holes and
accretion rates of the order of the Eddington limit the alignment timescale is
always short (less than a Myr), so that jets accelerated from the inner disc
region provide a prompt tracer of the angular momentum of gas at large radii in
the disc. Longer timescales are predicted for low luminosity systems, depending
on the degree of anisotropy in the disc's hydrodynamic response to shear and
warp, and for the final decay of modest warps at large radii in the disc that
are potentially observable via VLBI. We discuss the implications of this for
the inferred accretion history of those Active Galactic Nuclei whose jet
directions appear to be stable over long timescales. The large energy
deposition rate at modest disc radii during rapid realignment episodes should
make such objects transiently bright at optical and infrared wavelengths.Comment: MNRAS, in press. Revised to match accepted version, with one new
figure showing alignment timescale as a function of black hole mas
Synchrotron Emission from Hot Accretion Flows and the Cosmic Microwave Background Anisotropy
Current estimates of number counts of radio sources in the frequency range
where the most sensitive Cosmic Microwave Background (CMB) experiments are
carried out significantly under-represent sources with strongly inverted
spectra. Hot accretion flows around supermassive black holes in the nuclei of
nearby galaxies are expected to produce inverted radio spectra by thermal
synchrotron emission. We calculate the temperature fluctuations and power
spectra of these sources in the Planck Surveyor 30 GHz energy channel, where
their emission is expected to peak. We find that their potential contribution
is generally comparable to the instrumental noise, and approaches the CMB
anisotropy level at small angular scales. Forthcoming CMB missions, which will
provide a large statistical sample of inverted-spectra sources, will be crucial
for determining the distribution of hot accretion flows in nearby quiescent
galactic nuclei. Detection of these sources in different frequency channels
will help constrain their spectral characteristics, hence their physical
properties.Comment: 10 pages, 4 figures, accepted for publication in Ap
A Fluctuation Analysis of the Bolocam 1.1mm Lockman Hole Survey
We perform a fluctuation analysis of the 1.1mm Bolocam Lockman Hole Survey,
which covers 324 square arcmin to a very uniform point source-filtered RMS
noise level of 1.4 mJy/beam. The fluctuation analysis has the significant
advantage of utilizing all of the available data. We constrain the number
counts in the 1-10 mJy range, and derive significantly tighter constraints than
in previous work: the power-law index is 2.7 (+0.18, -0.15), while the
amplitude is equal to 1595 (+85,-238) sources per mJy per square degree, or
N(>1 mJy) = 940 (+50,-140) sources/square degree (95% confidence). Our results
agree extremely well with those derived from the extracted source number counts
by Laurent et al (2005). Our derived normalization is about 2.5 times smaller
than determined by MAMBO at 1.2mm by Greve et al (2004). However, the
uncertainty in the normalization for both data sets is dominated by the
systematic (i.e., absolute flux calibration) rather than statistical errors;
within these uncertainties, our results are in agreement. We estimate that
about 7% of the 1.1mm background has been resolved at 1 mJy.Comment: To appear in the Astrophysical Journal; 22 pages, 9 figure
A Survey for Alkaloids in Hawaiian Plants, III
Volume: 16Start Page: 63End Page: 6
Interactions of a Light Hypersonic Jet with a Non-Uniform Interstellar Medium
We present three dimensional simulations of the interaction of a light
hypersonic jet with an inhomogeneous thermal and turbulently supported disk in
an elliptical galaxy. We model the jet as a light, supersonic non-relativistic
flow with parameters selected to be consistent with a relativistic jet with
kinetic power just above the FR1/FR2 break.
We identify four generic phases in the evolution of such a jet with the
inhomogeneous interstellar medium: 1) an initial ``flood and channel'' phase,
where progress is characterized by high pressure gas finding changing weak
points in the ISM, flowing through channels that form and re-form over time, 2)
a spherical, energy-driven bubble phase, were the bubble is larger than the
disk scale, but the jet remains fully disrupted close to the nucleus, 3) a
rapid, jet break--out phase the where jet breaks free of the last dense clouds,
becomes collimated and pierces the spherical bubble, and 4) a classical phase,
the jet propagates in a momentum-dominated fashion leading to the classical jet
+ cocoon + bow-shock structure.
Mass transport in the simulations is investigated, and we propose a model for
the morphology and component proper motions in the well-studied Compact
Symmetric Object 4C31.04.Comment: 66 pages, 22 figures, PDFLaTeX, aastex macros, graphicx and amssymb
packages, Accepted, to be published 2007 ApJ
Heating the bubbly gas of galaxy clusters with weak shocks and sound waves
Using hydrodynamic simulations and a technique to extract the rotational
component of the velocity field, we show how bubbles of relativistic gas
inflated by AGN jets in galaxy clusters act as a catalyst, transforming the
energy carried by sound and shock waves to heat. The energy is stored in a
vortex field around the bubbles which can subsequently be dissipated. The
efficiency of this process is set mainly by the fraction of the cluster volume
filled by (sub-)kpc scale filaments and bubbles of relativistic plasma.Comment: Accepted for publication in ApJ Letters after minor wording changes,
4 figures, 4 page
Lense-Thirring precession of accretion disks around compact objects
Misaligned accretion disks surrounding rotating compact objects experience a
torque due to the Lense-Thirring effect, which leads to precession of the inner
disk. It has been suggested that this effect could be responsible for some low
frequency Quasi-Periodic Oscillations observed in the X-ray lightcurves of
neutron star and galactic black hole systems. We investigate this possibility
via time-dependent calculations of the response of the inner disk to impulsive
perturbations for both Newtonian point mass and Paczynski-Wiita potentials, and
compare the results to the predictions of the linearized twisted accretion disk
equations. For most of a wide range of disk models that we have considered, the
combination of differential precession and viscosity causes the warps to decay
extremely rapidly. Moreover, at least for relatively slowly rotating objects,
linear calculations in a Newtonian point mass potential provide a good measure
of the damping rate, provided only that the timescale for precession is much
shorter than the viscous time in the inner disk. The typically rapid decay
rates suggest that coherent precession of a fluid disk would not be observable,
though it remains possible that the damping rate of warp in the disk could be
low enough to permit weakly coherent signals from Lense-Thirring precession.Comment: ApJ, in press. Minor revisions to match accepted version. Animations
showing warp evolution are available at
http://www.cita.utoronto.ca/~armitage/lense_thirring.htm
- âŠ