8,754 research outputs found
Meson and Quark Degrees of Freedom and the Radius of the Deuteron
The existing experimental data for the deuteron charge radius are discussed.
The data of elastic electron scattering are inconsistent with the value
obtained in a recent atomic physics experiment. Theoretical predictions based
on a nonrelativistic description of the deuteron with realistic nucleon-nucleon
potentials and with a rather complete set of meson-exchange contributions to
the charge operator are presented. Corrections arising from the quark-gluon
substructure of the nucleon are explored in a nonrelativistic quark model; the
quark-gluon corrections, not accounted for by meson exchange, are small. Our
prediction for the deuteron charge radius favors the value of a recent atomic
physics experiment.Comment: 20 pages, LaTeX, 4 Postscript figures, to appear in Few-Body-System
The Onset of Planet Formation in Brown Dwarf Disks
The onset of planet formation in protoplanetary disks is marked by the growth
and crystallization of sub-micron-sized dust grains accompanied by dust
settling toward the disk mid-plane. Here we present infrared spectra of disks
around brown dwarfs and brown dwarf candidates. We show that all three
processes occur in such cool disks in a way similar or identical to that in
disks around low- and intermediate-mass stars. These results indicate that the
onset of planet formation extends to disks around brown dwarfs, suggesting that
planet formation is a robust process occurring in most young circumstellar
disks.Comment: Published in Science 2005, vol 310, 834; 3 pages in final format, 4
figures + 8 pages Supporting Online Material. For final typeset, see
http://www.sciencemag.org/cgi/content/abstract/310/5749/834?eto
Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations
Recent observations by the Atacama Large Millimeter/submillimeter Array
(ALMA) of disks around young stars revealed distinct asymmetries in the dust
continuum emission. In this work we want to study axisymmetric and
non-axisymmetric structures, evocated by the magneto-rotational instability in
the outer regions of protoplanetary disks. We combine the results of
state-of-the-art numerical simulations with post-processing radiative transfer
(RT) to generate synthetic maps and predictions for ALMA. We performed
non-ideal global 3D MHD stratified simulations of the dead-zone outer edge
using the FARGO MHD code PLUTO. The stellar and disk parameters are taken from
a parameterized disk model applied for fitting high-angular resolution
multi-wavelength observations of circumstellar disks. The 2D temperature and
density profiles are calculated consistently from a given surface density
profile and Monte-Carlo radiative transfer. The 2D Ohmic resistivity profile is
calculated using a dust chemistry model. The magnetic field is a vertical net
flux field. The resulting dust reemission provides the basis for the simulation
of observations with ALMA. The fiducial model develops a large gap followed by
a jump in surface density located at the dead-zone outer edge. The jump in
density and pressure is strong enough to stop the radial drift of particles. In
addition, we observe the generation of vortices by the Rossby wave instability
(RWI) at the jumps location close to 60 AU. The vortices are steadily generated
and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA
observations predict the feasibility to observe such large scale structures
appearing in magnetized disks without having a planet.Comment: Language update, added comments, added citations, in press. (A&A
Gain Dependence of the Noise in the Single Electron Transistor
An extensive investigation of low frequency noise in single electron
transistors as a function of gain is presented. Comparing the output noise with
gain for a large number of bias points, it is found that the noise is dominated
by external charge noise. For low gains we find an additional noise
contribution which is compared to a model including resistance fluctuations. We
conclude that this excess noise is not only due to resistance fluctuations. For
one sample, we find a record low minimum charge noise of qn = 9*10^-6
e/sqrt(Hz) in the superconducting state and qn = 9*10^-6 e/sqrt(Hz) in the
normal state at a frequency of 4.4 kHz.Comment: 10 pages, LaTex 2.09, 4 figures (epsfig
petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval
We present the easy-to-use, publicly available, Python package petitRADTRANS,
built for the spectral characterization of exoplanet atmospheres. The code is
fast, accurate, and versatile; it can calculate both transmission and emission
spectra within a few seconds at low resolution ( = 1000;
correlated-k method) and high resolution (;
line-by-line method), using only a few lines of input instruction. The somewhat
slower correlated-k method is used at low resolution because it is more
accurate than methods such as opacity sampling. Clouds can be included and
treated using wavelength-dependent power law opacities, or by using optical
constants of real condensates, specifying either the cloud particle size, or
the atmospheric mixing and particle settling strength. Opacities of amorphous
or crystalline, spherical or irregularly-shaped cloud particles are available.
The line opacity database spans temperatures between 80 and 3000 K, allowing to
model fluxes of objects such as terrestrial planets, super-Earths, Neptunes, or
hot Jupiters, if their atmospheres are hydrogen-dominated. Higher temperature
points and species will be added in the future, allowing to also model the
class of ultra hot-Jupiters, with equilibrium temperatures K. Radiative transfer results were tested by cross-verifying the low- and
high-resolution implementation of petitRADTRANS, and benchmarked with the
petitCODE, which itself is also benchmarked to the ATMO and Exo-REM codes. We
successfully carried out test retrievals of synthetic JWST emission and
transmission spectra (for the hot Jupiter TrES-4b, which has a of
1800 K). The code is publicly available at
http://gitlab.com/mauricemolli/petitRADTRANS, and its documentation can be
found at https://petitradtrans.readthedocs.io.Comment: 17 pages, 7 figures, published in A&
High spatial resolution mid-infrared observations of the low-mass young star TW Hya
We want to improve knowledge of the structure of the inner few AU of the
circumstellar disk around the nearby T Tauri star TW Hya. Earlier studies have
suggested the existence of a large inner hole, possibly caused by interactions
with a growing protoplanet. We used interferometric observations in the N-band
obtained with the MIDI instrument on the Very Large Telescope Interferometer,
together with 10 micron spectra recorded by the infrared satellite Spitzer. The
fact that we were able to determine N-band correlated fluxes and visibilities
for this comparatively faint source shows that MIR interferometry can be
applied to a large number of low-mass young stellar objects.
The MIR spectra obtained with Spitzer reveal emission lines from HI (6-5), HI
(7-6), and [Ne II] and show that over 90% of the dust we see in this wavelength
regime is amorphous. According to the correlated flux measured with MIDI, most
of the crystalline material is in the inner, unresolved part of the disk, about
1 AU in radius. The visibilities exclude the existence of a very large (3-4 AU
radius) inner hole in the circumstellar disk of TW Hya, which was required in
earlier models. We propose instead a geometry of the inner disk where an inner
hole still exists, but at a much reduced radius, with the transition from zero
to full disk height between 0.5 and 0.8 AU, and with an optically thin
distribution of dust inside. Such a model can comply with SED and MIR
visibilities, as well as with visibility and extended emission observed in the
NIR at 2 micron. If a massive planet was the reason for this inner hole, as has
been speculated, its orbit would have to be closer to the star than 0.3 AU.
Alternatively, we may be witnessing the end of the accretion phase and an early
phase of an inward-out dispersal of the circumstellar disk.Comment: 13 pages, 9 figures, accepted by A&
Soft Photons from Off-shell Particles in a Hot Plasma
Considering the propagation of off-shell particles in the framework of
thermal field theory, we present the general formalism for the calculation of
the production rate of soft photons and dileptons from a hot plasma. This
approach is illustrated with an electrodynamic plasma. The photon production
rate from strongly interacting quarks in the quark-gluon plasma, which might be
formed in ultrarelativistic heavy ion collisions, is calculated in the
previously unaccessible regime of photon energies of the order of the plasma
temperature within an effective field theory incorporating dynamical chiral
symmetry breaking.Comment: 8 pages in RevTeX format, 3 figures uuencoded postscript added. Also
available by anonymous ftp at ftp://tpri6c.gsi.de/pub/phenning/qh95ga
Biodiversity and Ecosystem Health of the Aldabra Group, Southern Seychelles: Scientific Report to the Government of Seychelles.
National Geographic's Pristine Seas project, in collaboration with the government of the Seychelles, the Island Conservation Society (ICS), the Seychelles Islands Foundation (SIF), and the Waitt Foundation, conducted an expedition to explore the poorly known marine environment around these islands. The goals were to assess the biodiversity of the nearshore marine environment and to survey the largely unknown deep sea realm. The data collected contribute to the marine spatial planning of the Seychelles, in particular the creation of large marine reserves
- …