629 research outputs found

    Quantum Impurities in the Two-Dimensional Spin One-Half Heisenberg Antiferromagnet

    Full text link
    The study of randomness in low-dimensional quantum antiferromagnets is at the forefront of research in the field of strongly correlated electron systems, yet there have been relatively few experimental model systems. Complementary neutron scattering and numerical experiments demonstrate that the spin-diluted Heisenberg antiferromagnet La2Cu(1-z)(Zn,Mg)zO4 is an excellent model material for square-lattice site percolation in the extreme quantum limit of spin one-half. Measurements of the ordered moment and spin correlations provide important quantitative information for tests of theories for this complex quantum-impurity problem.Comment: 11 pages, 3 figures. NOTE: possible errors in PDF version of Fig. 1. View postscript version of figure if possibl

    The Square-Lattice Heisenberg Antiferromagnet at Very Large Correlation Lengths

    Full text link
    The correlation length of the square-lattice spin-1/2 Heisenberg antiferromagnet is studied in the low-temperature (asymptotic-scaling) regime. Our novel approach combines a very efficient loop cluster algorithm -- operating directly in the Euclidean time continuum -- with finite-size scaling. This enables us to probe correlation lengths up to ξ≈350,000\xi \approx 350,000 lattice spacings -- more than three orders of magnitude larger than any previous study. We resolve a conundrum concerning the applicability of asymptotic-scaling formulae to experimentally- and numerically-determined correlation lengths, and arrive at a very precise determination of the low-energy observables. Our results have direct implications for the zero-temperature behavior of spin-1/2 ladders.Comment: 12 pages, RevTeX, plus two Postscript figures. Some minor modifications for final submission to Physical Review Letters. (accepted by PRL

    Correlation Lengths in Quantum Spin Ladders

    Full text link
    Analytic expressions for the correlation length temperature dependences are given for antiferromagnetic spin-1/2 Heisenberg ladders using a finite-size non-linear sigma-model approach. These calculations rely on identifying three successive crossover regimes as a function of temperature. In each of these regimes, precise and controlled approximations are formulated. The analytical results are found to be in excellent agreement with Monte Carlo simulations for the Heisenberg Hamiltonian.Comment: 5 pages LaTeX using RevTeX, 3 encapsulated postscript figure

    Quantum vs. Geometric Disorder in a Two-Dimensional Heisenberg Antiferromagnet

    Full text link
    We present a numerical study of the spin-1/2 bilayer Heisenberg antiferromagnet with random interlayer dimer dilution. From the temperature dependence of the uniform susceptibility and a scaling analysis of the spin correlation length we deduce the ground state phase diagram as a function of nonmagnetic impurity concentration p and bilayer coupling g. At the site percolation threshold, there exists a multicritical point at small but nonzero bilayer coupling g_m = 0.15(3). The magnetic properties of the single-layer material La_2Cu_{1-p}(Zn,Mg)_pO_4 near the percolation threshold appear to be controlled by the proximity to this new quantum critical point.Comment: minor changes, updated figure

    Spin Dependence of Correlations in Two-Dimensional Quantum Heisenberg Antiferromagnets

    Full text link
    We present a series expansion study of spin-S square-lattice Heisenberg antiferromagnets. The numerical data are in excellent agreement with recent neutron scattering measurements. Our key result is that the correlation length for S>1/2 strongly deviates from the exact T->0 (renormalized classical, or RC) scaling prediction for all experimentally and numerically accessible temperatures. We note basic trends with S of the experimental and series expansion correlation length data and propose a scaling crossover scenario to explain them.Comment: 5 pages, REVTeX file. PostScript file for the paper with embedded figures available via WWW at http://xxx.lanl.gov/ps/cond-mat/9503143

    Topological spin excitations of Heisenberg antiferromagnets in two dimensions

    Full text link
    In this paper we discuss the construction and the dynamics of vortex-like topological spin excitations in the Schwinger-boson description of Heisenberg antiferromagnets in two dimensions. The topological spin excitations are Dirac fermions (with gap) when spin value SS is a half-integer. Experimental and theoretical implications of these excitations are being investigated.Comment: Latex file, no figur

    Charge-Transfer Excitations in the Model Superconductor HgBa2_2CuO4+δ_{\bf 4+\delta}

    Full text link
    We report a Cu KK-edge resonant inelastic x-ray scattering (RIXS) study of charge-transfer excitations in the 2-8 eV range in the structurally simple compound HgBa2_2CuO4+δ_{4+\delta} at optimal doping (Tc=96.5T_{\rm c} = 96.5 K). The spectra exhibit a significant dependence on the incident photon energy which we carefully utilize to resolve a multiplet of weakly-dispersive (<0.5 < 0.5 eV) electron-hole excitations, including a mode at 2 eV. The observation of this 2 eV excitation suggests the existence of a charge-transfer pseudogap deep in the superconducting phase. Quite generally, our data demonstrate the importance of exploring the incident photon energy dependence of the RIXS cross section.Comment: 5 pages, 3 figure

    Unraveling the Nature of Charge Excitations in La2_2CuO4_4 with Momentum-Resolved Cu KK-edge Resonant Inelastic X-ray Scattering

    Full text link
    Results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu KK-edge resonant inelastic X-ray scattering (RIXS) from La2_{2}CuO4_{4}. The model includes electronic orbitals necessary to highlight non-local Zhang-Rice singlet, charge transfer and dd-dd excitations, as well as states with apical oxygen 2pzp_z character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multi-orbital character of RIXS profiles in the energy transfer range 1-6 eV.Comment: Original: 4.5 pages. Replaced: 4 pages and 4 figures with updated content and reference

    Dimensional Crossover in Quantum Antiferromagnets

    Full text link
    The dimensional crossover in a spin-SS nearest neighbor Heisenberg antiferromagnet is discussed as it is tuned from a two-dimensional square lattice, of lattice spacing aa, towards a spin chain by varying the width LyL_y of a semi-infinite strip Lx×LyL_x\times L_y. For integer spins and arbitrary LyL_y, and for half integer spins with Ly/aL_y/a an arbitrary even integer, explicit analytical expressions for the zero temperature correlation length and the spin gap are given. For half integer spins and Ly/aL_y/a an odd inetger, it is shown that the c=1c=1 behavior of the SU(2)1SU(2)_1 WZW fixed point is squeezed out as the width Ly→∞L_y\to \infty; here cc is the conformal charge. The results specialized to S=1/2S=1/2 are relevant to spin-ladder systems.Comment: RevTeX, 4 pages, 1 embedded postscript figur
    • …
    corecore