35 research outputs found

    Single molecule probes of membrane structure: Orientation of BODIPY probes in DPPC as a function of probe structure

    Get PDF
    Single molecule fluorescence measurements have recently been used to probe the orientation of fluorescent lipid analogs doped into lipid films at trace levels. Using defocused polarized total internal reflection fluorescence microscopy (PTIRF-M), these studies have shown that fluorophore orientation responds to changes in membrane surface pressure and composition, providing a molecular level marker of membrane structure. Here we extend those studies by characterizing the single molecule orientations of six related BODIPY probes doped into monolayers of DPPC. Langmuir–Blodgett monolayers transferred at various surface pressures are used to compare the response from fluorescent lipid analogs in which the location of the BODIPY probe is varied along the length of the acyl chain. For each BODIPY probe location along the chain, comparisons are made between analogs containing phosphocholine and smaller fatty acid headgroups. Together these studies show a general propensity of the BODIPY analogs to insert into membranes with the BODIPY probe aligned along the acyl chains or looped back to interact with the headgroups. For all BODIPY probes studied, a bimodal orientation distribution is observed which is sensitive to surface pressure, with the population of BODIPY probes aligned along the acyl chains increasing with elevated surface pressure. Trends in the single molecule orientations for the six analogs reveal a configuration where optimal placement of the BODIPY probe within the acyl chain maximizes its sensitivity to the surrounding membrane structure. These results are discussed in terms of balancing the effects of headgroup association with acyl chain length in designing the optimal placement of the BODIPY probe

    Near-field Scanning Optical Microscopy: a Tool for Nanormetric Exploration of Biological Membranes

    No full text
    Near-field scanning optical microscopy (NSOM) is an emerging optical technique that enables simultaneous high-resolution fluorescence and topography measurements. Here we discuss selected applications of NSOM to biological systems that help illustrate the utility of its high spatial resolution and simultaneous collection of both fluorescence and topography. For the biological sciences, these attributes seem particularly well suited for addressing ongoing issues in membrane organization, such as those regarding lipid rafts, and protein–protein interactions. Here we highlight a few NSOM measurements on model membranes, isolated biological membranes, and cultured cells that help illustrate some of these capabilities. We finish by highlighting nontraditional applications of NSOM that take advantage of the small probe to create nanometric sensors or new modes of imaging

    Attention Deficit Hyperactivity Disorder, Aggression, and Illicit Stimulant Use: Is This Self-Medication?

    No full text
    This study compares adults with and without attention deficit hyperactivity disorder (ADHD) on measures of direct and displaced aggression and illicit drug use. Three hundred ninety-six adults were administered the Wender Utah Rating Scale, the Risk Behavior Assessment, the Aggression Questionnaire (AQ), and the Displaced Aggression Questionnaire (DAQ). Those with ADHD were higher on all scales of the AQ and DAQ, were younger at first use of amphetamines, and were more likely to have ever used crack and amphetamines. A Structural Equation Model found a significant interaction in that for those with medium and high levels of verbal aggression, ADHD predicts crack and amphetamine. Follow-up logistic regression models suggest that blacks self-medicate with crack and whites and Hispanics self-medicate with amphetamine when they have ADHD and verbal aggression

    Attention Deficit Hyperactivity Disorder, Aggression, and Illicit Stimulant Use: Is This Self-Medication?

    No full text
    This study compares adults with and without attention deficit hyperactivity disorder (ADHD) on measures of direct and displaced aggression and illicit drug use. Three hundred ninety-six adults were administered the Wender Utah Rating Scale, the Risk Behavior Assessment, the Aggression Questionnaire (AQ), and the Displaced Aggression Questionnaire (DAQ). Those with ADHD were higher on all scales of the AQ and DAQ, were younger at first use of amphetamines, and were more likely to have ever used crack and amphetamines. A Structural Equation Model found a significant interaction in that for those with medium and high levels of verbal aggression, ADHD predicts crack and amphetamine. Follow-up logistic regression models suggest that blacks self-medicate with crack and whites and Hispanics self-medicate with amphetamine when they have ADHD and verbal aggression
    corecore