10 research outputs found

    Demand-Orientated Power Production from Biogas: Modeling and Simulations under Swedish Conditions

    Get PDF
    The total share of intermittent renewable electricity is increasing, intensifying the need for power balancing in future electricity systems. Demand-orientated combined heat and power (CHP) production from biogas has potential for this purpose. An agricultural biogas plant, using cattle manure and sugar beet for biogas and CHP production, was analyzed here. The model Dynamic Biogas plant Model (DyBiM) was developed and connected to the Anaerobic Digestion Model No. 1 (ADM1). Flexible scenarios were simulated and compared against a reference scenario with continuous production, to evaluate the technical requirements and economic implications of demand-orientated production. The study was set in Swedish conditions regarding electricity and heat price, and the flexibility approaches assessed were increased CHP and gas storage capacity and feeding management. The results showed that larger gas storage capacity was needed for demand-orientated CHP production but that feeding management reduced the storage requirement because of fast biogas production response to feeding. Income from electricity increased by 10%, applying simple electricity production strategies to a doubled CHP capacity. However, as a result of the currently low Swedish diurnal electricity price variation and lack of subsidies for demand-orientated electricity production, the increase in income was too low to cover the investment costs. Nevertheless, DyBiM proved to be a useful modeling tool for assessing the economic outcome of different flexibility scenarios for demand-orientated CHP production

    Optimizing biogas plants with excess power unit and storage capacity in electricity and control reserve markets

    No full text
    Increasing shares of intermittent power sources such as solar and wind will require biomass fueled generation more variable to respond to the increasing volatility of supply and demand. Furthermore, renewable energy sources will need to provide ancillary services. Biogas plants with excess generator capacity and gas storages can adapt the unit commitment to the demand and the market prices, respectively. This work presents a method of day-ahead unit commitment of biogas plants with excess generator capacity and gas storage participating in short-term electricity and control reserve markets. A biogas plant with 0.6 MW annual average electric output is examined in a case study under German market conditions. For this biogas plant different sizes of the power units and the gas storage are compared in consideration of costs and benefits of installing excess capacity. For optimal decisions depending on prices, a mixed-integer linear programming (MILP) approach is presented. The results show that earnings of biogas plants in electricity markets are increased by additional supplying control reserve. Furthermore, increasing the installed capacity from 0.6 MW to 1 MW (factor 1.7) leads to the best cost benefit-ratio in consideration of additional costs of excess capacity and additional market revenues. However, the result of the cost benefit-analysis of installing excess capacity is still negative. Considering the EEG flexibility premium, introduced in 2012 in the German renewable energy sources act, the result of the cost benefit-analysis is positive. The highest profit is achieved with an increase of the installed capacity from 0.6 MW to 2 MW (factor 3.3)

    Contributions of flexible power generation from biomass to a secure and cost-effective electricity supply—a review of potentials, incentives and obstacles in Germany

    No full text
    corecore