11 research outputs found

    Star polymer synthesis: Via λ-orthogonal photochemistry

    No full text
    We introduce a light induced sequence enabling λ-orthogonal star polymer formation via an arms-first approach, based on an α,ω-functional polymer carrying tetrazole and o-methyl benzaldehyde moieties, which upon irradiation can readily undergo cycloaddition with a trifunctional maleimide core. Depending on the wavelength, the telechelic strand can be attached to the core at either photo-reactive end. © 2016 The Royal Society of Chemistry

    λ-Orthogonale Photochemie: Lichtinduzierte pericyclische Reaktionen an Makromolekülen

    No full text
    Eine photochemische Strategie nutzt λ-orthogonale Reaktionen zum Aufbau makromolekularer Architekturen und zum wellenlängenabhängigen Einbau chemischer Funktionalitäten in ein einzelnes Molekül. λ-Orthogonale pericyclische Reaktionen können unabhängig voneinander durch die spezifische photochemische Aktivierung einer chemischen Funktionalität ablaufen. Die Leistungsfähigkeit dieses neuen Konzeptes wird durch eine Eintopfreaktion belegt, bei der Maleinsäureimid mit zwei Polymeren, die unterschiedliche photoaktive Endgruppen (Photoenol und Tetrazol) tragen, selektiv reagieren. Beliebige aktivierte Doppelbindungen können durch eine gezielte Bestrahlung mit λ=310–350 nm mit einem Photoenol-funktionalisierten Polymer reagieren. Nach vollständigem Photoenolumsatz aktiviert eine Bestrahlung mit λ=270–310 nm die Reaktion des Tetrazols mit Maleimid. Die Vielseitigkeit dieses Ansatzes wird durch die λ-orthogonale Klick-Reaktionen von komplexen Maleimiden, funktionalen Enen und Polymeren an ein zentrales Polymergerüst gezeigt

    Global trends for kp? Expanding the frontier of ester side chain topography in acrylates and methacrylates

    No full text
    The Arrhenius parameters of the propagation rate coefficient for two linear methacrylates, two branched methacrylates, and two branched acrylates are determined via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method. The Mark-Houwink-Kuhn-Sakurada parameters of these polymers are additionally determined via multidetector SEC of narrowly distributed polymer samples obtained through fractionation, allowing for a correct SEC calibration in the PLP-SEC experiment. The data obtained for stearyl methacrylate (SMA, A = 3.45 (-1.17 to +4.46) × 106 L·mol-1·s-1; Ea = 21.49 (-1.59 to +1.90) kJ·mol-1) and behenyl methacrylate (BeMA, A = 2.51 (-0.80 to +3.06) × 106 L·mol-1·s -1; Ea = 20.52 (-1.43 to +1.85) kJ·mol -1) underpin the trend of increasing kp with increasing ester side chain length. Propylheptyl methacrylate (PHMA, A = 2.83 (-0.82 to 3.15) × 106 L·mol-1·s-1; Ea = 21.72 (-1.20 to +1.64) kJ·mol-1) and heptadecanyl methacrylate (C17MA, A = 2.04 (-0.66 to +1.71) × 10 6 L·mol-1·s-1; Ea = 20.72 (-1.42 to +1.38) kJ·mol-1) can be described as a family of branched methacrylates jointly with isodecyl methacrylate and ethylhexyl methacrylate (both published previously), resulting in joint Arrhenius parameters of A = 2.39 (-0.51 to +0.84) × 106 L·mol -1·s-1 and Ea = 21.16 (-0.78 to +0.76) kJ·mol-1. In addition, the corresponding branched acrylates are studied applying high-frequency PLP at a 500 Hz laser repetition rate, resulting in Arrhenius parameters of A = 1.05 (-0.42 to +2.81) × 10 7 L·mol-1·s-1 and Ea = 16.41 (-1.99 to +2.42) kJ·mol-1 for propylheptyl acrylate (PHA) and A = 8.15 (-2.83 to +10.3) × 106 L·mol -1·s-1 and Ea = 14.66 (-1.49 to +1.66) kJ·mol-1 for heptadecanyl acrylate (C17A). © 2012 American Chemical Society

    Wavelength selective polymer network formation of end-functional star polymers

    No full text
    A wavelength selective technique for light-induced network formation based on two photo-active moieties, namely ortho-methylbenzaldehyde and tetrazole is introduced. The network forming species are photo-reactive star polymers generated via reversible activation fragmentation chain transfer (RAFT) polymerization, allowing the network to be based on almost any vinylic monomer. Direct laser writing (DLW) allows to form any complex three-dimensional structure based on the photo-reactive star polymers. © The Royal Society of Chemistry
    corecore