431 research outputs found

    Magnetic Trapping of Metastable Calcium Atoms

    Full text link
    Metastable calcium atoms, produced in a magneto-optic trap (MOT) operating within the singlet system, are continuously loaded into a magnetic trap formed by the magnetic quadrupole field of the MOT. At MOT temperatures of 3 mK and 240 ms loading time we observe 1.1 x 10^8 magnetically trapped 3P2 atoms at densities of 2.4 x 10^8 cm^-3 and temperatures of 0.61 mK. In a modified scheme we first load a MOT for metastable atoms at a temperature of 0.18 mK and subsequently release these atoms into the magnetic trap. In this case 240 ms of loading yields 2.4 x 10^8 trapped 3P2 atoms at a peak density of 8.7 x 10^10 cm^-3 and a temperature of 0.13 mK. The temperature decrease observed in the magnetic trap for both loading schemes can be explained only in part by trap size effects.Comment: 4 figure

    Unconventional superfluid order in the FF-band of a bipartite optical square lattice

    Full text link
    We report on the first observation of bosons condensed into the energy minima of an FF-band of a bipartite square optical lattice. Momentum spectra indicate that a truly complex-valued staggered angular momentum superfluid order is established. The corresponding wave function is composed of alternating local F2x3−3x+iF2y3−3yF_{2x^3-3x} + i F_{2y^3-3y}-orbits and local SS-orbits residing in the deep and shallow wells of the lattice, which are arranged as the black and white areas of a checkerboard. A pattern of staggered vortical currents arises, which breaks time reversal symmetry and the translational symmetry of the lattice potential. We have measured the populations of higher order Bragg peaks in the momentum spectra for varying relative depths of the shallow and deep lattice wells and find remarkable agreement with band calculations.Comment: 4 pages, 3 figure

    Continuous loading of 1^{1}S0_{0} calcium atoms into an optical dipole trap

    Full text link
    We demonstrate an efficient scheme for continuous trap loading based upon spatially selective optical pumping. We discuss the case of 1^{1}S0_{0} calcium atoms in an optical dipole trap (ODT), however, similar strategies should be applicable to a wide range of atomic species. Our starting point is a reservoir of moderately cold (≈300μ\approx 300 \muK) metastable 3^{3}P2_{2}-atoms prepared by means of a magneto-optic trap (triplet-MOT). A focused 532 nm laser beam produces a strongly elongated optical potential for 1^{1}S0_{0}-atoms with up to 350 μ\muK well depth. A weak focused laser beam at 430 nm, carefully superimposed upon the ODT beam, selectively pumps the 3^{3}P2_{2}-atoms inside the capture volume to the singlet state, where they are confined by the ODT. The triplet-MOT perpetually refills the capture volume with 3^{3}P2_{2}-atoms thus providing a continuous stream of cold atoms into the ODT at a rate of 10710^7 s−1^{-1}. Limited by evaporation loss, in 200 ms we typically load 5×1055 \times 10^5 atoms with an initial radial temperature of 85 μ\muK. After terminating the loading we observe evaporation during 50 ms leaving us with 10510^5 atoms at radial temperatures close to 40 μ\muK and a peak phase space density of 6.8×10−56.8 \times 10^{-5}. We point out that a comparable scheme could be employed to load a dipole trap with 3^{3}P0_{0}-atoms.Comment: 4 pages, 4 figure

    Normal mode splitting and mechanical effects of an optical lattice in a ring cavity

    Full text link
    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detunedby about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.Comment: 4 pages, 3 figure

    Collective Sideband Cooling in an Optical Ring Cavity

    Get PDF
    We propose a cavity based laser cooling and trapping scheme, providing tight confinement and cooling to very low temperatures, without degradation at high particle densities. A bidirectionally pumped ring cavity builds up a resonantly enhanced optical standing wave which acts to confine polarizable particles in deep potential wells. The particle localization yields a coupling of the degenerate travelling wave modes via coherent photon redistribution. This induces a splitting of the cavity resonances with a high frequency component, that is tuned to the anti-Stokes Raman sideband of the particles oscillating in the potential wells, yielding cooling due to excess anti-Stokes scattering. Tight confinement in the optical lattice together with the prediction, that more than 50% of the trapped particles can be cooled into the motional ground state, promise high phase space densities.Comment: 4 pages, 1 figur

    Echo in Optical Lattices: Stimulated Revival of Breathing Oscillations

    Full text link
    We analyze a stimulated revival (echo) effect for the breathing modes of the atomic oscillations in optical lattices. The effect arises from the dephasing due to the weak anharmonicity being partly reversed in time by means of additional parametric excitation of the optical lattice. The shape of the echo response is obtained by numerically simulating the equation of motion for the atoms with subsequent averaging over the thermal initial conditions. A qualitative analysis of the phenomenon shows that the suggested echo mechanism combines the features of both spin and phonon echoes.Comment: 13 pages, 3 figure
    • …
    corecore