49 research outputs found

    KIR Polymorphisms Modulate Peptide-Dependent Binding to an MHC Class I Ligand with a Bw6 Motif

    Get PDF
    Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets

    A Novel Immunodominant CD8+ T Cell Response Restricted by a Common HLA-C Allele Targets a Conserved Region of Gag HIV-1 Clade CRF01_AE Infected Thais

    Get PDF
    Background: CD8+ T cell responses play an important role in the control of HIV-1. The extensive sequence diversity of HIV-1 represents a critical hurdle to developing an effective HIV-1 vaccine, and it is likely that regional-specific vaccine strains will be required to overcome the diversity of the different HIV-1 clades distributed world-wide. Unfortunately, little is known about the CD8+ T cell responses against CRF01_AE, which is responsible for the majority of infections in Southeast Asia. Methodology/Principal Findings: To identify dominant CD8+ T cell responses recognized in HIV-1 clade CRF01_AE infected subjects we drew upon data from an immunological screen of 100 HIV-1 clade CRF01_AE infected subjects using IFN-gamma ELISpot to characterize a novel immunodominant CD8+ T cell response in HIV-1 Gag restricted by HLA-Cw*0102 (p24, 277YSPVSILDI 285, YI9). Over 75% of Cw*0102+ve subjects targeted this epitope, representing the strongest response in more than a third of these individuals. This novel CD8 epitope was located in a highly conserved region of HIV-1 Gag known to contain immunodominant CD8 epitopes, which are restricted by HLA-B*57 and -B*27 in clade B infection. Nonetheless, viral escape in this epitope was frequently observed in Cw*0102+ve subjects, suggestive of strong selection pressure being exerted by this common CD8+ T cell response. Conclusions/Significance: As HLA-Cw*0102 is frequently expressed in the Thai population (allelic frequency of 16.8%), this immunodominant Cw*0102-restricted Gag epitope may represent an attractive candidate for vaccines specific to CRF01_AE and may help facilitate further studies of immunopathogenesis in this understudied HIV-1 clade. © 2011 Buranapraditkun et al

    KIR and HLA Loci Are Associated with Hepatocellular Carcinoma Development in Patients with Hepatitis B Virus Infection: A Case-Control Study

    Get PDF
    BACKGROUND: Natural killer (NK) cells activation has been reported to contribute to inflammation and liver injury during hepatitis B virus (HBV) infection both in transgenic mice and in patients. However, the role of NK cells in the process of HBV-associated hepatocellular carcinoma (HCC) development has not been addressed. Killer cell immunoglobulin-like receptors (KIRs) are involved in regulating NK cell activation through recognition of specific human leukocyte antigen (HLA) class I allotypes. METHODOLOGY/PRINCIPAL FINDINGS: To investigate whether KIR and HLA genes could influence the risk of HBV-associated HCC development, 144 HBV-infected patients with HCC and 189 well-matched HBV infectors with chronic hepatitis or cirrhosis as non-HCC controls were enrolled in this study. The presence of 12 loci of KIR was detected individually. HLA-A, -B, -C loci were genotyped with high-resolution. HLA-C group 1 homozygote (OR = 2.02; p = 0.005), HLA-Bw4-80I (OR = 2.67; p = 2.0E-04) and combination of full-length form and 22 bp-deleted form of KIR2DS4 (KIR2DS4/1D) (OR = 1.89; p = 0.017) were found associated with HCC incidence. When the combined effects of these three genetic factors were evaluated, more risk factors were observed correlating with higher odds ratios for HCC incidence (P trend = 7.4E-05). Because all the risk factors we found have been reported to result in high NK cell functional potential by previous studies, our observations suggest that NK cell activation may contribute to HBV-associated HCC development. CONCLUSIONS/SIGNIFICANCE: In conclusion, this study has identified significant associations that suggest an important role for NK cells in HCC incidence in HBV-infected patients. Our study is useful for HCC surveillance and has implications for novel personalized therapy strategy development aiming at HCC prevention in HBV-infected patients

    Different Patterns of Evolution in the Centromeric and Telomeric Regions of Group A and B Haplotypes of the Human Killer Cell Ig-Like Receptor Locus

    Get PDF
    The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ∼6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ∼1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region

    HIV-1 transmission and acute HIV-1 infection.

    No full text
    An understanding of the central events in the transmission of HIV-1 infection is critical to the development of effective strategies to prevent infection. Although the main routes of transmission have been known for some time, surprisingly little is known about the factors that influence the likelihood of transmitting or acquiring HIV-1 infection. Once infection has taken place, the series of virological and immunopathological events that constitute primary HIV-1 infection are thought to be closely linked with the subsequent clinical course of the infected person. Recent studies have provided some support for the notion that intervention with aggressive anti-retroviral drug therapy at this stage has the potential to prevent some of the damage to the immune system that will otherwise develop in the vast majority of infected people

    Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific.

    No full text
    The recognition of MHC class I molecules by killer cell immunoglobulin-like receptors (KIR) is central to the control of NK cell function and can also modulate the CTL activation threshold. Among KIR receptors, KIR3DL2 is thought to interact with HLA-A3 and -A11, although direct evidence has been lacking. In this study, we show that HLA-A3 and -A11 tetramers specifically bind to KIR3DL2*001 transfectants and that this recognition is peptide-specific. Single amino acid substitutions in the nonamer peptide underline a critical role for residue 8 in recognition of KIR3DL2. However, the role of this interaction in vivo still remains to be established

    A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers.

    No full text
    EBV is a gammaherpesvirus that can establish both nonproductive (latent) and productive (lytic) infections within the cells of its host. Although T cell responses to EBV latent proteins have been well characterized, little is known about the importance of responses to lytic proteins in long term virus carriers. Here we have compared the frequencies of CD8+ T cells specific for EBV latent and lytic Ags in healthy virus carriers, using three techniques: limiting dilution analysis, enzyme-linked immunospot assay, and FACS staining with tetrameric MHC-peptide complexes. T cells specific for EBV lytic protein epitopes were readily detectable in all donors and were usually more abundant than those specific for latent epitopes. We infer that direct T cell control of viral replicative lesions is maintained in long term carriers of EBV and is an important component of the immune response to this virus. Estimates of CD8+ T cell frequencies varied considerably according to methodology; values obtained from MHC-peptide tetramer staining were, on the average, 4.4-fold higher than those obtained from enzyme-linked immunospot assays, which were, in turn, on the average, 5.3-fold higher than those obtained from limiting dilution analysis. Tetramer staining showed that as many as 5.5% circulating CD8+ T cells in a virus carrier were specific for a single EBV lytic protein epitope. Such values are much greater than previously imagined and illustrate how antigenic challenge from a persistent herpesvirus can influence the composition of the host's CD8+ T cell pool
    corecore