12,756 research outputs found

    Kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8

    Get PDF
    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds

    Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices

    Get PDF
    Glass of stoichiometric celsian composition, BaO-Al2O3-2SiO2, is a potential glass-ceramic matrix for high-temperature composites. The glass has a density of 3.39 g/cu cm, thermal expansion coefficient of 6.6 x 10(exp -6)/deg C glass transition temperature of 910 C, and dilatometric softening point of 925 C. On heat treatment, only hexacelsian crystallized out on the surface, but both celsian and hexacelsian were present in the bulk. Effects of cold isostatic pressing (CIP), sintering, and hot pressing, in the presence and absence of an additive, on the formation of the celsian phase in the glass were studied. CIP'ed samples, after appropriate heat treatments, always crystallized out as celsian whereas the presence of 5 to 10 weight percent of an additive was necessary for formation of celsian in sintered as well as hot pressed specimens. Green density increased with CIP'ing pressure but had no effect on sintered density. Hot pressing resulted in fully dense samples

    Comments on 'Kinetic Study on the Hexacelsian-Celsian Phase Transformation'

    Get PDF
    A value of 20.1 +/- 4 kcal/mole for the activation energy (E) for the hexacelsian to celsian phase transformation in BaAl2Si2O8 was reported in an earlier work. In the present work, the earlier experimental data were reanalyzed and a much higher value of E was obtained. This revised E value is consistent with the transformation mechanism of a layered hexacelsian structure into a three-dimensional feldspar structure of celsian which would necessitate the breaking of the Si-O and/or the Al-O bonds

    Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices

    Get PDF
    Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glasss transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder x ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structure transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C

    Voltage Stability Analysis of Grid-Connected Wind Farms with FACTS: Static and Dynamic Analysis

    Get PDF
    Recently, analysis of some major blackouts and failures of power system shows that voltage instability problem has been one of the main reasons of these disturbances and networks collapse. In this paper, a systematic approach to voltage stability analysis using various techniques for the IEEE 14-bus case study, is presented. Static analysis is used to analyze the voltage stability of the system under study, whilst the dynamic analysis is used to evaluate the performance of compensators. The static techniques used are Power Flow, V–P curve analysis, and Q–V modal analysis. In this study, Flexible Alternating Current Transmission system (FACTS) devices- namely, Static Synchronous Compensators (STATCOMs) and Static Var Compensators (SVCs) - are used as reactive power compensators, taking into account maintaining the violated voltage magnitudes of the weak buses within the acceptable limits defined in ANSI C84.1. Simulation results validate that both the STATCOMs and the SVCs can be effectively used to enhance the static voltage stability and increasing network loadability margin. Additionally, based on the dynamic analysis results, it has been shown that STATCOMs have superior performance, in dynamic voltage stability enhancement, compared to SVCs

    Observation of Dirac plasmons in a topological insulator

    Full text link
    Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons of massless Dirac electrons were instead recently observed in a purely two-dimensional electron system (2DEG)like graphene, and their properties are promising for new tunable plasmonic metamaterials in the terahertz and the mid-infrared frequency range. Dirac quasi-particles are known to exist also in the two-dimensional electron gas which forms at the surface of topological insulators due to a strong spin-orbit interaction. Therefore,one may look for their collective excitations by using infrared spectroscopy. Here we first report evidence of plasmonic excitations in a topological insulator (Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W and period 2W to select suitable values of the plasmon wavevector k. Their lineshape was found to be extremely robust vs. temperature between 6 and 300 K, as one may expect for the excitations of topological carriers. Moreover, by changing W and measuring in the terahertz range the plasmonic frequency vP vs. k we could show, without using any fitting parameter, that the dispersion curve is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013

    Special Theory of Relativity through the Doppler Effect

    Full text link
    We present the special theory of relativity taking the Doppler effect as the starting point, and derive several of its main effects, such as time dilation, length contraction, addition of velocities, and the mass-energy relation, and assuming energy and momentum conservation, we discuss how to introduce the 4-momentum in a natural way. We also use the Doppler effect to explain the "twin paradox", and its version on a cylinder. As a by-product we discuss Bell's spaceship paradox, and the Lorentz transformation for arbitrary velocities in one dimension.Comment: 20 pages, 1 figur

    Multiple colonization and dispersal events hide the early origin and induce a lack of genetic structure of the moss Bryum argenteum in Antarctica.

    Get PDF
    The dispersal routes of taxa with transoceanic disjunctions remain poorly understood, with the potential roles of Antarctica not yet demonstrated. Mosses are suitable organisms to test direct intra‐Antarctic dispersal, as major component of the extant Antarctic flora, with the cosmopolitan moss Bryum argenteum as ideal target species. We analyzed the genetic structure of B. argenteum to provide an evolutionary time frame for its radiation and shed light into its historical biogeography in the Antarctic region. We tested two alternative scenarios: (a) intra‐Antarctic panmixia and (b) intra‐Antarctic genetic differentiation. Furthermore, we tested for evidence of the existence of specific intra‐Antarctic dispersal routes. Sixty‐seven new samples (40 collected in Antarctica) were sequenced for ITS nrDNA and rps4 cpDNA regions, and phylogenetic trees of B. argenteum were constructed, with a focus on its Southern Hemisphere. Combining our new nrDNA dataset with previously published datasets, we estimated time‐calibrated phylogenies based on two different substitution rates (derived from angiosperms and bryophytes) along with ancestral area estimations. Minimum spanning network and pairwise genetic distances were also calculated. B. argenteum was potentially distributed across Africa and Antarctica soon after its origin. Its earliest intra‐Antarctic dispersal and diversification occurred during a warming period in the Pliocene. On the same timescale, a radiation took place involving a dispersal event from Antarctica to the sub‐Antarctic islands. A more recent event of dispersal and diversification within Antarctica occurred during a warm period in the Pleistocene, creating favorable conditions also for its colonization outside the Antarctic continent worldwide. We provide evidence supporting the hypothesis that contemporary populations of B. argenteum in Antarctica integrate a history of both multiple long‐range dispersal events and local persistence combined with in situ diversification. Our data support the hypothesis that B. argenteum has been characterized by strong connectivity within Antarctica, suggesting the existence of intra‐Antarctic dispersal routes

    Review of Fuel Management practices at various stages of nuclear fuel cycle in PHWRs in view of Environmental effects

    Get PDF
    Nuclear Power is emerging as a promising source of environmentally benign energy source alternate from both pollution free environment as well as solution to global warming because of minimal carbon footprint. However, release of radiation and radioactive contamination during fuel cycle operations comprising the optimum fuel utilization in Nuclear Reactors, still remains a challenge to contain the sources of radiation and contamination away from public domain. This review article envisages qualitatively the environmental effects w.r.t. radiation during flow of Natural Uranium fuel used in Indian Pressurized Heavy Water Reactors (IPHWRs) at various stages of mining, fabrication, transportation, operation in nuclear reactors, and storage after operation. The review has been completed by detailed compilation and study of the involved activities in the nuclear fuel cycle. Advanced modelling and computational analysis techniques are being employed at various stages, which form the basis for various administrative and technical measures to ensure minimal radiation exposure. It is concluded that organizations engaged in these activities are committed to minimum environmental impact and follow a safety culture in their system and among workers to ensure best administrative control in handling of radiation and radiation sources to limit exposure to public domain. In view of the limitations of LNT (Linear No Threshold) principle and the presence of radiation due to natural sources in the environment, it is desirable to revisit the provisions of ALARA principle (As low as reasonably achievable) as presently being followed in carrying out any activity related to radiation and radiation sources

    Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis

    Get PDF
    We conducted extensive histological examination of the tissues that were adjacent to the prosthesis in nine hips that had a failed total arthroplasty. The prostheses were composed of titanium alloy (Ti-6Al-4V) and ultra-high molecular weight polyethylene. The average time that the prosthesis had been in place in the tissue was 33.5 months (range, eleven to fifty-seven months). Seven arthroplasties were revised because of aseptic loosening and two, for infection. In eight hips cement had been used and in one (that had a porous-coated implant for fifty-two months) no cement had been utilized. Intense histiocytic and plasma-cell reaction was noted in the pseudocapsular tissue. There was copious metallic staining of the lining cells. Polyethylene debris and particles of cement with concomitant giant-cell reaction were present in five hips. Atomic absorption spectrophotometry revealed values for titanium of fifty-sic to 3700 micrograms per gram of dry tissue (average, 1047 micrograms per gram; normal, zero microgram per gram), for aluminum of 2.1 to 396 micrograms per gram (average, 115 micrograms per gram; normal, zero micrograms per gram), and for vanadium of 2.9 to 220 micrograms per gram (average, sixty-seven micrograms per gram; normal, 1.2 micrograms per gram). The highest values were found in the hip in which surgical revision was performed at fifty-seven months. The concentrations of the three elements in the soft tissues were similar to those in the metal of the prostheses. The factors to which failure was attributed were: vertical orientation of the acetabular component (five hips), poor cementing technique on the femoral side (three hips), infection (two hips), and separation of a sintered pad made of pure titanium (one hip). A femoral component that is made of titanium alloy can undergo severe wear of the surface and on the stem, where it is loose, with liberation of potentially toxic local concentrations of metal debris into the surrounding tissues. It may contribute to infection and loosening
    corecore