98 research outputs found
Efficient Palladium-Catalyzed Cyclotrimeriza- tion of Arynes: Synthesis of Triphenylenes**
Over the last 15 years much effort has been devoted to the preparation and characterization of transition metal complexes of arynes. [1] Parallel studies on the reactivity of these complexesÐparticularly those of Ti, Zr, As part of a project aimed at the development of new reactions of arynes promoted by metal complexes, here we report on the metal-mediated cyclotrimerization of arynes. These preliminary results show that the reaction proceeds in the presence of catalytic amounts of metal and that it has great potential for the preparation of triphenylenes, which are found at the core of many discotic liquid crystals [9] An example of the formation of triphenylene as side product of a palladium-catalyzed domino reaction has also been reported. [10] However, to the best of our knowledge, efficient preparation of triphenylenes by metalcatalyzed reaction of arynes is without precedent. Development of a catalytic procedure for the trimerization of arynes requires careful selection of the catalyst and the method for generation of the aryne. The catalyst was chosen from among the various metal systems used for trimerization of alkynes; suitable candidates contained metals such as Ni, Co, Pd, and Pt. We decided to carry out the first trials with palladium complexes because they are easy to handle and in general stable. Among the many procedures available for the generation of arynes [9] S
Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy
The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance
in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution,
four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural
dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing
the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in
the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single
particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous
nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo
(bio)chemical transformations
Time-resolved single-crystal X-ray crystallography
In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p
57Fe- MÖSSBAUER EMISSION SPECTROSCOPY OF AN IRON (II) COMPLEX WITH TEMPERATURE DEPENDENT SPIN STATE
No abstract availabl
Recent advances of spin crossover research
Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing energy, has attracted increasing attention by many research groups. One of the reasons is the promising potential for practical applications. In this chapter we intend to cover essential recent work, primarily accomplished within the European research network on "Thermal and Optical Switching of Molecular Spin States (TOSS)". New spin crossover compounds and their thermal spin transition behaviour, also under applied pressure, novel effects observed by irradiation and magnetic field, will be discussed. Progress in theoretical treatments of spin crossover phenomena, particularly cooperativity, will be briefly outlined. The chapter concludes with a summary of research highlights published by the partner laboratories of the TMR network TOSS.</p
Special classes of iron(II) azole spin crossover compounds
In this chapter, selected results obtained so far on Fe(II) spin crossover compounds of 1,2,4-triazole, isoxazole and tetrazole derivatives are summarized and analysed. These materials include the only compounds known to have Fe(II)N(6) spin crossover chromophores consisting of six chemically identical heterocyclic ligands. Particular attention is paid to the coordination modes for substituted 1,2,4-triazole derivatives towards Fe(II) resulting in polynuclear and mononuclear compounds exhibiting Fe(II) spin transitions. Furthermore, the physical properties of mononuclear Fe(II) isoxazole and 1-alkyl-tetrazole compounds are discussed in relation to their structures. It will also be shown that the use of alpha,beta- and alpha,omega-bis(tetrazol-1-yl)alkane type ligands allowed a novel strategy towards obtaining polynuclear Fe(II) spin crossover materials
Recent advances of spin crossover research
Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing energy, has attracted increasing attention by many research groups. One of the reasons is the promising potential for practical applications. In this chapter we intend to cover essential recent work, primarily accomplished within the European research network on "Thermal and Optical Switching of Molecular Spin States (TOSS)". New spin crossover compounds and their thermal spin transition behaviour, also under applied pressure, novel effects observed by irradiation and magnetic field, will be discussed. Progress in theoretical treatments of spin crossover phenomena, particularly cooperativity, will be briefly outlined. The chapter concludes with a summary of research highlights published by the partner laboratories of the TMR network TOSS
- …