40,734 research outputs found
Radiative Neutrino Mass, Dark Matter and Leptogenesis
We propose an extension of the standard model, in which neutrinos are Dirac
particles and their tiny masses originate from a one-loop radiative diagram.
The new fields required by the neutrino mass-generation also accommodate the
explanation for the matter-antimatter asymmetry and dark matter in the
universe.Comment: 4 pages, 3 figures. Revised version with improved model. Accepted by
PR
Active repositioning of storage units in Robotic Mobile Fulfillment Systems
In our work we focus on Robotic Mobile Fulfillment Systems in e-commerce
distribution centers. These systems were designed to increase pick rates by
employing mobile robots bringing movable storage units (so-called pods) to pick
and replenishment stations as needed, and back to the storage area afterwards.
One advantage of this approach is that repositioning of inventory can be done
continuously, even during pick and replenishment operations. This is primarily
accomplished by bringing a pod to a storage location different than the one it
was fetched from, a process we call passive pod repositioning. Additionally,
this can be done by explicitly bringing a pod from one storage location to
another, a process we call active pod repositioning. In this work we introduce
first mechanisms for the latter technique and conduct a simulation-based
experiment to give first insights of their effect
Neutrino masses, leptogenesis and dark matter in hybrid seesaw
We suggest a hybrid seesaw model where relatively ``light''right-handed
neutrinos give no contribution to the neutrino mass matrix due to a special
symmetry. This allows their Yukawa couplings to the standard model particles to
be relatively strong, so that the standard model Higgs boson can decay
dominantly to a left and a right-handed neutrino, leaving another stable
right-handed neutrino as cold dark matter. In our model neutrino masses arise
via the type-II seesaw mechanism, the Higgs triplet scalars being also
responsible for the generation of the matter-antimatter asymmetry via the
leptogenesis mechanism.Comment: 4 page
Non-parametric models in the monitoring of engine performance and condition: Part 2: non-intrusive estimation of diesel engine cylinder pressure and its use in fault detection
An application of the radial basis function model, described in Part 1, is demonstrated on a four-cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the trained model are validated against measured data and an example is given of the application of this model to the detection of a slight fault in one of the cylinders
Risk, cohabitation and marriage
This paper introduces imperfect information,learning,and risk aversion in a two sided matching model.The modelprovides a theoreticalframework for the com- monly occurring phenomenon of cohabitation followed by marriage,and is con- sistent with empirical findings on these institutions.The paper has three major results.First,individuals set higher standards for marriage than for cohabitation. When the true worth of a cohabiting partner is revealed,some cohabiting unions are converted into marriage while others are not.Second,individuals cohabit within classes.Third,the premium that compensates individuals for the higher risk involved in marriage over a cohabiting partnership is derived.This premium can be decomposed into two parts.The first part is a function of the individual ’s level of risk aversion,while the second part is a function of the di difference in risk between marriage and cohabitation.
Ground-State Entanglement in Interacting Bosonic Graphs
We consider a collection of bosonic modes corresponding to the vertices of a
graph Quantum tunneling can occur only along the edges of
and a local self-interaction term is present. Quantum entanglement of one
vertex with respect the rest of the graph is analyzed in the ground-state of
the system as a function of the tunneling amplitude The topology of
plays a major role in determining the tunneling amplitude
which leads to the maximum ground-state entanglement. Whereas in most of the
cases one finds the intuitively expected result we show that it
there exists a family of graphs for which the optimal value of is pushed
down to a finite value. We also show that, for complete graphs, our bi-partite
entanglement provides useful insights in the analysis of the cross-over between
insulating and superfluid ground statesComment: 5 pages (LaTeX) 5 eps figures include
Glassy Dynamics in a Frustrated Spin System: Role of Defects
In an effort to understand the glass transition, the kinetics of a spin model
with frustration but no quenched randomness has been analyzed. The
phenomenology of the spin model is remarkably similiar to that of structural
glasses. Analysis of the model suggests that defects play a major role in
dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter,
proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics
- …