601 research outputs found

    The web-based information system for small and medium enterprises of Tomsk region

    Get PDF
    This paper presents the web enabled automated information data support system of small and medium-sized enterprises of Tomsk region. We define the purpose and application field of the system. In addition, we build a generic architecture and find system functions

    BKM Lie superalgebras from counting twisted CHL dyons

    Full text link
    Following Sen[arXiv:0911.1563], we study the counting of (`twisted') BPS states that contribute to twisted helicity trace indices in four-dimensional CHL models with N=4 supersymmetry. The generating functions of half-BPS states, twisted as well as untwisted, are given in terms of multiplicative eta products with the Mathieu group, M_{24}, playing an important role. These multiplicative eta products enable us to construct Siegel modular forms that count twisted quarter-BPS states. The square-roots of these Siegel modular forms turn out be precisely a special class of Siegel modular forms, the dd-modular forms, that have been classified by Clery and Gritsenko[arXiv:0812.3962]. We show that each one of these dd-modular forms arise as the Weyl-Kac-Borcherds denominator formula of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the Weyl chamber are in one-to-one correspondence with the walls of marginal stability in the corresponding CHL model for twisted dyons as well as untwisted ones. This leads to a periodic table of BKM Lie superalgebras with properties that are consistent with physical expectations.Comment: LaTeX, 32 pages; (v2) matches published versio

    Generalized Kac-Moody Algebras from CHL dyons

    Full text link
    We provide evidence for the existence of a family of generalized Kac-Moody(GKM) superalgebras, G_N, whose Weyl-Kac-Borcherds denominator formula gives rise to a genus-two modular form at level N, Delta_{k/2}(Z), for (N,k)=(1,10), (2,6), (3,4), and possibly (5,2). The square of the automorphic form is the modular transform of the generating function of the degeneracy of CHL dyons in asymmetric Z_N-orbifolds of the heterotic string compactified on T^6. The new generalized Kac-Moody superalgebras all arise as different `automorphic corrections' of the same Lie algebra and are closely related to a generalized Kac-Moody superalgebra constructed by Gritsenko and Nikulin. The automorphic forms, Delta_{k/2}(Z), arise as additive lifts of Jacobi forms of (integral) weight k/2 and index 1/2. We note that the orbifolding acts on the imaginary simple roots of the unorbifolded GKM superalgebra, G_1 leaving the real simple roots untouched. We anticipate that these superalgebras will play a role in understanding the `algebra of BPS states' in CHL compactifications.Comment: LaTeX, 35 pages; v2: improved referencing and discussion; typos corrected; v3 [substantial revision] 44 pages, modularity of additive lift proved, product representation of the forms also given; further references adde

    Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac--Moody Lie algebras

    Full text link
    This is a continuation of our "Lecture on Kac--Moody Lie algebras of the arithmetic type" \cite{25}. We consider hyperbolic (i.e. signature (n,1)(n,1)) integral symmetric bilinear form S:M×MZS:M\times M \to {\Bbb Z} (i.e. hyperbolic lattice), reflection group WW(S)W\subset W(S), fundamental polyhedron \Cal M of WW and an acceptable (corresponding to twisting coefficients) set P({\Cal M})\subset M of vectors orthogonal to faces of \Cal M (simple roots). One can construct the corresponding Lorentzian Kac--Moody Lie algebra {\goth g}={\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) which is graded by MM. We show that \goth g has good behavior of imaginary roots, its denominator formula is defined in a natural domain and has good automorphic properties if and only if \goth g has so called {\it restricted arithmetic type}. We show that every finitely generated (i.e. P({\Cal M}) is finite) algebra {\goth g}^{\prime\prime}(A(S,W_1,P({\Cal M}_1))) may be embedded to {\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) of the restricted arithmetic type. Thus, Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type is a natural class to study. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type have the best automorphic properties for the denominator function if they have {\it a lattice Weyl vector ρ\rho}. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type with generalized lattice Weyl vector ρ\rho are called {\it elliptic}Comment: Some corrections in Sects. 2.1, 2.2 were done. They don't reflect on results and ideas. 31 pages, no figures. AMSTe

    New Metaphorical Models in Modern Sports Discourse

    Get PDF
    The cognitive and linguocultural aspects of metaphor implementation in Russian linguoculture are considered on the basis of figurative words and expressions in sports discourse. The novelty of the study lies in revealing the fact that more and more new conceptual areas are involved in presenting sporting events and building communication with reader: various terms of IT technologies, the world of TV series and computer games, while new stable systems of comparison begin to form: “sport” — “virtual computer world”, “sport” — “series”. The relevance of the study is confirmed by the use of terms from computer games and TV series that help to form an assessment of events or persons in the world of sports. It is noted that the study of metaphors is of great importance not only for the study of various types of discourse, but also for understanding the algorithms for mastering the picture of the world. At the same time, it is recognized that the main regular metaphors of sports discourse are based on the interaction of such conceptual areas as “sport” — “war”, “sport” — “show”, “sport” — “labor”. It is clarified that the focus of this article is on new conceptual areas that enrich and expand human understanding of sport

    Nonlocal density functionals and the linear response of the homogeneous electron gas

    Full text link
    The known and usable truly nonlocal functionals for exchange-correlation energy of the inhomogeneous electron gas are the ADA (average density approximation) and the WDA (weighted density approximation). ADA, by design, yields the correct linear response function of the uniform electron gas. WDA is constructed so that it is exact in the limit of one-electron systems. We derive an expression for the linear response of the uniform gas in the WDA, and calculate it for several flavors of WDA. We then compare the results with the Monte-Carlo data on the exchange-correlation local field correction, and identify the weak points of conventional WDA in the homogeneous limit. We suggest how the WDA can be modified to improve the response function. The resulting approximation is a good one in both opposite limits, and should be useful for practical nonlocal density functional calculations.Comment: 4 pages, two eps figures embedde

    Micropatterning in bistable cholesteric device with Bragg’s reflection

    Get PDF
    In this work, the method to form bistable patterning in a cholesteric cell with Bragg’s reflection in the visible spectral range is demonstratedyesBelgorod State Universit

    Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits

    Full text link
    We give a criterion for a Dynkin diagram, equivalently a generalized Cartan matrix, to be symmetrizable. This criterion is easily checked on the Dynkin diagram. We obtain a simple proof that the maximal rank of a Dynkin diagram of compact hyperbolic type is 5, while the maximal rank of a symmetrizable Dynkin diagram of compact hyperbolic type is 4. Building on earlier classification results of Kac, Kobayashi-Morita, Li and Sa\c{c}lio\~{g}lu, we present the 238 hyperbolic Dynkin diagrams in ranks 3-10, 142 of which are symmetrizable. For each symmetrizable hyperbolic generalized Cartan matrix, we give a symmetrization and hence the distinct lengths of real roots in the corresponding root system. For each such hyperbolic root system we determine the disjoint orbits of the action of the Weyl group on real roots. It follows that the maximal number of disjoint Weyl group orbits on real roots in a hyperbolic root system is 4.Comment: J. Phys. A: Math. Theor (to appear

    Borcherds symmetries in M-theory

    Get PDF
    It is well known but rather mysterious that root spaces of the EkE_k Lie groups appear in the second integral cohomology of regular, complex, compact, del Pezzo surfaces. The corresponding groups act on the scalar fields (0-forms) of toroidal compactifications of M theory. Their Borel subgroups are actually subgroups of supergroups of finite dimension over the Grassmann algebra of differential forms on spacetime that have been shown to preserve the self-duality equation obeyed by all bosonic form-fields of the theory. We show here that the corresponding duality superalgebras are nothing but Borcherds superalgebras truncated by the above choice of Grassmann coefficients. The full Borcherds' root lattices are the second integral cohomology of the del Pezzo surfaces. Our choice of simple roots uses the anti-canonical form and its known orthogonal complement. Another result is the determination of del Pezzo surfaces associated to other string and field theory models. Dimensional reduction on TkT^k corresponds to blow-up of kk points in general position with respect to each other. All theories of the Magic triangle that reduce to the EnE_n sigma model in three dimensions correspond to singular del Pezzo surfaces with A8nA_{8-n} (normal) singularity at a point. The case of type I and heterotic theories if one drops their gauge sector corresponds to non-normal (singular along a curve) del Pezzo's. We comment on previous encounters with Borcherds algebras at the end of the paper.Comment: 30 pages. Besides expository improvements, we exclude by hand real fermionic simple roots when they would naively aris
    corecore