1,415 research outputs found

    Multi-copy and stochastic transformation of multipartite pure states

    Full text link
    Characterizing the transformation and classification of multipartite entangled states is a basic problem in quantum information. We study the problem under two most common environments, local operations and classical communications (LOCC), stochastic LOCC and two more general environments, multi-copy LOCC (MCLOCC) and multi-copy SLOCC (MCSLOCC). We show that two transformable multipartite states under LOCC or SLOCC are also transformable under MCLOCC and MCSLOCC. What's more, these two environments are equivalent in the sense that two transformable states under MCLOCC are also transformable under MCSLOCC, and vice versa. Based on these environments we classify the multipartite pure states into a few inequivalent sets and orbits, between which we build the partial order to decide their transformation. In particular, we investigate the structure of SLOCC-equivalent states in terms of tensor rank, which is known as the generalized Schmidt rank. Given the tensor rank, we show that GHZ states can be used to generate all states with a smaller or equivalent tensor rank under SLOCC, and all reduced separable states with a cardinality smaller or equivalent than the tensor rank under LOCC. Using these concepts, we extended the concept of "maximally entangled state" in the multi-partite system.Comment: 8 pages, 1 figure, revised version according to colleagues' comment

    On-demand generation of entanglement of atomic qubits via optical interferometry

    Full text link
    The problem of on-demand generation of entanglement between single-atom qubits via a common photonic channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder interferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be created without cavity-enhancement. Both approaches require single-photon resolving detectors, and best results would be obtained by combining both cavity-feedback and twin-Fock inputs. Such an approach may allow a fidelity of .99.99 using a two-photon input and currently available mirror and detector technology. In addition, we study interferometers based on NOON states and show that they perform similarly to the twin-Fock states, yet without the need for high-precision photo-detectors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping etc.etc., can be realized with the aid of single-qubit operations.Comment: To be published in PR

    Greenberger-Horne-Zeilinger state protocols for fully connected qubit networks

    Full text link
    We generalize the recently proposed Greenberger-Horne-Zeilinger (GHZ) tripartite protocol [A. Galiautdinov, J. M. Martinis, Phys. Rev. A 78, 010305(R) (2008)] to fully connected networks of weakly coupled qubits interacting by way of anisotropic Heisenberg exchange g(XX+YY)+g1*ZZ. Our model adopted here differs from the more familiar Ising-Heisenberg chain in that here every qubit interacts with every other qubit in the circuit. The assumption of identical couplings on all qubit pairs allows an elegant proof of the protocol for arbitrary N. In order to further make contact with experiment, we study fidelity degradation due to coupling imperfections by numerically simulating the N=3 and N=4 cases. Our simulations indicate that the best fidelity at unequal couplings is achieved when (a) the system is initially prepared in the uniform superposition state (similarly to how it is done in the ideal case), and (b) the entangling time and the final rotations on each of the qubits are appropriately adjusted.Comment: 11 pages, 1 figur

    Full characterization of a three-photon GHZ state using quantum state tomography

    Full text link
    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the GHZ state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure

    Generalized Quantum Theory: Overview and Latest Developments

    Get PDF
    The main formal structures of Generalized Quantum Theory are summarized. Recent progress has sharpened some of the concepts, in particular the notion of an observable, the action of an observable on states (putting more emphasis on the role of proposition observables), and the concept of generalized entanglement. Furthermore, the active role of the observer in the structure of observables and the partitioning of systems is emphasized.Comment: 14 pages, update in reference

    Hardy's proof of nonlocality in the presence of noise

    Full text link
    We extend the validity of Hardy's nonlocality without inequalities proof to cover the case of special one-parameter classes of non-pure statistical operators. These mixed states are obtained by mixing the Hardy states with a completely chaotic noise or with a colored noise and they represent a realistic description of imperfect preparation processes of (pure) Hardy states in nonlocality experiments. Within such a framework we are able to exhibit a precise range of values of the parameter measuring the noise affecting the non-optimal preparation of an arbitrary Hardy state, for which it is still possible to put into evidence genuine nonlocal effects. Equivalently, our work exhibits particular classes of bipartite mixed states whose constituents do not admit any local and deterministic hidden variable model reproducing the quantum mechanical predictions.Comment: 9 pages, 2 figures, RevTex, revised versio

    Channel Capacities versus Entanglement Measures in Multiparty Quantum States

    Full text link
    For quantum states of two subsystems, entanglement measures are related to capacities of communication tasks -- highly entangled states give higher capacity of transmitting classical as well as quantum information. However, we show that this is no more the case in general: quantum capacities of multi-access channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Along with revealing the structural richness of multi-access channel capacities, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by known multiparty entanglement measures.Comment: 6 pages, 2 figures, RevTeX4; v2: minor changes, some implications strengthene

    Greenberger-Horne-Zeilinger argument of nonlocality without inequalities for mixed states

    Full text link
    We generalize the Greenberger-Horne-Zeilinger nonlocality without inequalities argument to cover the case of arbitrary mixed statistical operators associated to three-qubits quantum systems. More precisely, we determine the radius of a ball (in the trace distance topology) surrounding the pure GHZ state and containing arbitrary mixed statistical operators which cannot be described by any local and realistic hidden variable model and which are, as a consequence, noncompletely separable. As a practical application, we focus on certain one-parameter classes of mixed states which are commonly considered in the experimental realization of the original GHZ argument and which result from imperfect preparations of the pure GHZ state. In these cases we determine for which values of the parameter controlling the noise a nonlocality argument can still be exhibited, despite the mixedness of the considered states. Moreover, the effect of the imperfect nature of measurement processes is discussed.Comment: 8 pages, RevTex; added references, corrected typo
    corecore