216 research outputs found
Diffusivities of an Equimolar Methane–Propane Mixture Across the Two-Phase Region by Dynamic Light Scattering
Abstract
The present contribution examines the accessibility of diffusivities across the two-phase region of an equimolar methane–propane mixture for dynamic light scattering (DLS) experiments. Heterodyne DLS experiments and theoretical calculations of the Rayleigh ratio were performed at 125 different thermodynamic states including the gas, liquid, supercritical, and the two-phase region. The present measurements document that two diffusivities can be determined simultaneously in the liquid state and saturated liquid phase for temperatures and pressures which correspond to densities larger than 1.15 times the critical density. Based on a rigorous assignment of the signals detected in this work, the slow and fast diffusivities could be associated with the Fick and thermal diffusivities. For all other thermodynamic states, a single hydrodynamic mode or signal was obtained experimentally. With the help of theoretical Rayleigh ratios as well as from the general behavior of the diffusivities as a function of temperature and pressure, the signals were identified to be related to the Fick diffusivity in the supercritical state and to a mixed diffusivity in the gas state and the saturated vapor phase. The results are discussed in connection with the behavior of the diffusivities along certain paths in the pressure–temperature projection of the phase diagram of the mixture
Translational and rotational diffusion coefficients in nanofluids from polarized dynamic light scattering
Nanofluids representing nanometer-sized solid particles dispersed in liquids are of interest in many
fields of process and energy engineering, e.g., heat transfer, catalysis, and the design of functionalized
materials [1]. The physical, chemical, optical, and electronic properties of nanofluids are strongly driven
by the size, shape, surface potential, and concentration of the nanoparticles. For the analysis of diffusive
processes in nanofluids allowing access to, e.g., particle size and its distribution, dynamic light scattering
(DLS) is the state-of-the-art technique. It is based on the analysis of microscopic fluctuations originating
from the random thermal movement of particles in the continuous liquid phase at macroscopic
thermodynamic equilibrium. For anisotropic particles or particle aggregates, besides translational
diffusion also rotational diffusion occurs. To obtain the sum of the orientation-averaged translational
(DT) and rotational (DR) diffusivities by depolarized DLS [2], a homodyne detection scheme is usually
applied which can hardly be fulfilled in the experimental realization. Furthermore, the experiments are
restricted to limited ranges for temperature, particle concentration, and viscosity
The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave
Background: Heat waves have a drastic impact on urban populations, which could increase with climate change
Tribological properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere
This work is concerned with the study of the tribologic properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere. The fluorinated compounds all present good intrinsic friction properties (friction coefficient in the range 0.05–0.09). The tribologic performances are optimized if the materials present remaining graphitic domains (influenced by the presence of intercalated fluorinated species) whereas the perfluorinated compounds, where the fluorocarbon layers are corrugated (armchair configuration of the saturated carbon rings) present higher friction coefficients. Raman analyses reveal that the friction process induces severe changes in the materials structure especially the partial re-building of graphitic domains in the case of perfluorinated compounds which explains the improvement of μ during the friction tests for these last materials
WNT signalling in prostate cancer
Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer
Analytical Processing of Binary Mixture Information by Olfactory Bulb Glomeruli
Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved
- …