87 research outputs found
Mach-Zehnder Bragg interferometer for a Bose-Einstein Condensate
We construct a Mach-Zehnder interferometer using Bose-Einstein condensed
rubidium atoms and optical Bragg diffraction. In contrast to interferometers
based on normal diffraction, where only a small percentage of the atoms
contribute to the signal, our Bragg diffraction interferometer uses all the
condensate atoms. The condensate coherence properties and high phase-space
density result in an interference pattern of nearly 100% contrast. In
principle, the enclosed area of the interferometer may be arbitrarily large,
making it an ideal tool that could be used in the detection of vortices, or
possibly even gravitational waves.Comment: 10 pages, 3 figures, Quantum Electronics and Laser Science Conference
1999, Postdeadline papers QPD12-
Diffraction of complex molecules by structures made of light
We demonstrate that structures made of light can be used to coherently
control the motion of complex molecules. In particular, we show diffraction of
the fullerenes C60 and C70 at a thin grating based on a standing light wave. We
prove experimentally that the principles of this effect, well known from atom
optics, can be successfully extended to massive and large molecules which are
internally in a thermodynamic mixed state and which do not exhibit narrow
optical resonances. Our results will be important for the observation of
quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure
A new photon recoil experiment: towards a determination of the fine structure constant
We report on progress towards a measurement of the fine structure constant to
an accuracy of or better by measuring the ratio of the
Planck constant to the mass of the cesium atom. Compared to similar
experiments, ours is improved in three significant ways: (i) simultaneous
conjugate interferometers, (ii) multi-photon Bragg diffraction between same
internal states, and (iii) an about 1000 fold reduction of laser phase noise to
-138 dBc/Hz. Combining that with a new method to simultaneously stabilize the
phases of four frequencies, we achieve 0.2 mrad effective phase noise at the
location of the atoms. In addition, we use active stabilization to suppress
systematic effects due to beam misalignment.Comment: 12 pages, 9 figure
Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate
An exact theory for the density of a one-dimensional Bose-Einstein condensate
with hard core particle interactions is developed in second quantization and
applied to the scattering of the condensate by a spatially periodic impulse
potential. The boson problem is mapped onto a system of free fermions obeying
the Pauli exclusion principle to facilitate the calculation. The density
exhibits a spatial focusing of the probability density as well as a periodic
self-imaging in time, or Talbot effect. Furthermore, the transition from single
particle to many body effects can be measured by observing the decay of the
modulated condensate density pattern in time. The connection of these results
to classical and atom optical phase gratings is made explicit
Resolved diffraction patterns from a reflection grating for atoms
We have studied atomic diffraction at normal incidence from an evanescent
standing wave with a high resolution using velocity selective Raman
transitions. We have observed up to 3 resolved orders of diffraction, which are
well accounted for by a scalar diffraction theory. In our experiment the
transverse coherence length of the source is greater than the period of the
diffraction grating.Comment: 8 pages, 4 figure
Gravitational-wave Detection With Matter-wave Interferometers Based On Standing Light Waves
We study the possibility of detecting gravitational-waves with matter-wave
interferometers, where atom beams are split, deflected and recombined totally
by standing light waves. Our calculation shows that the phase shift is
dominated by terms proportional to the time derivative of the gravitational
wave amplitude. Taking into account future improvements on current
technologies, it is promising to build a matter-wave interferometer detector
with desired sensitivity.Comment: 7 pages, 3 figures. To be published in General Relativity and
Gravitatio
High resolution amplitude and phase gratings in atom optics
An atom-field geometry is chosen in which an atomic beam traverses a field
interaction zone consisting of three fields, one having frequency propagating in the direction and the other two having
frequencies and propagating in the
- direction. For and , where and are positive integers and
is the pulse duration in the atomic rest frame, the atom-field interaction
results in the creation of atom amplitude and phase gratings having period . In this manner, one can use optical fields having
wavelength to produce atom gratings having periodicity much less
than .Comment: 11 pages, 14 figure
Coherent Control of Atomic Beam Diffraction by Standing Light
Quantum interference is shown to deliver a means of regulating the
diffraction pattern of a thermal atomic beam interacting with two standing wave
electric fields. Parameters have been identified to enhance the diffraction
probability of one momentum component over the others, with specific
application to Rb atoms.Comment: 5 figure
Atom gratings produced by large angle atom beam splitters
An asymptotic theory of atom scattering by large amplitude periodic
potentials is developed in the Raman-Nath approximation. The atom grating
profile arising after scattering is evaluated in the Fresnel zone for
triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It
is shown that, owing to the scattering in these potentials, two
\QTR{em}{groups} of momentum states are produced rather than two distinct
momentum components. The corresponding spatial density profile is calculated
and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure
Bloch-Like Quantum Multiple Reflections of Atoms
We show that under certain circumstances an atom can follow an oscillatory
motion in a periodic laser profile with a Gaussian envelope. These oscillations
can be well explained by using a model of energetically forbidden spatial
regions. The similarities and differences with Bloch oscillations are
discussed. We demonstrate that the effect exists not only for repulsive but
also for attractive potentials, i.e. quantum multiple reflections are also
possible.Comment: LaTeX, 7 pages, 7 figure
- …
