7,332 research outputs found
A first broad-scale molecular phylogeny of Prionoceridae (Coleoptera: Cleroidea) provides insight into taxonomy, biogeography and life history evolution
© Senckenberg Gesellschaft fur Naturforschung, 2016. This is an open access article. Authors are permitted to post a PDF of their own articles, as provided by the publisher, on their personal web pages or the web page of their institution. Any commercial use is excluded. The attached file is the published version of the article
Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST
We constructed several multilocus DNA sequence datasets to assess the phylogenetic diversity of insecticolous fusaria, especially focusing on those housed at the Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF), and to aid molecular identifications of unknowns via the FUSARIUM-ID and Fusarium MLST online databases and analysis packages. Analyses of a 190-taxon, two-locus dataset, which included 159 isolates from insects, indicated that: (i) insect-associated fusaria were nested within 10 species complexes spanning the phylogenetic breadth of Fusarium, (ii) novel, putatively unnamed insecticolous species were nested within 8/10 species complexes and (iii) Latin binomials could be applied with confidence to only 18/58 phylogenetically distinct fusaria associated with pest insects. Phylogenetic analyses of an 82-taxon, three-locus dataset nearly fully resolved evolutionary relationships among the 10 clades containing insecticolous fusaria. Multilocus typing of isolates within four species complexes identified surprisingly high genetic diversity in that 63/65 of the fusaria typed represented newly discovered haplotypes. The DNA sequence data, together with corrected ABI sequence chromatograms and alignments, have been uploaded to the following websites dedicated to identifying fusaria: FUSARIUM-ID (http://isolate.fusariumdb.org) a
Vigilant Keratinocytes Trigger PAMP Signaling in Response to Streptococcal M1 Protein.
The human skin exerts many functions in order to maintain its barrier integrity and protect the host from invading microorganisms. One such pathogen is Streptococcus pyogenes, which can cause a variety of superficial skin wounds that may eventually progress into invasive deep soft tissue infections. Here we show that keratinocytes recognize soluble M1 protein, a streptococcal virulence factor, as a PAMP to release alarming inflammatory responses. We found that this interaction initiates an inflammatory intracellular signaling cascade involving the activation of mitogen-activated kinases, ERK, p38 and JNK, and the subsequent induction and mobilization of the transcription factors NF-κB and AP-1. We also determined the imprint of inflammatory mediators released, such as IL-8, GROα, MIF, EMMPRIN, IL-1α, IL-1Ra, and ST2 in response to streptococcal M1 protein. The expression of IL-8 is dependent on TLR2 activity and subsequent activation of the MAP kinases ERK and p38. Notably this signaling seems distinct for IL-8 release and it is not shared with the other inflammatory mediators. We conclude that keratinocytes participate pro-inflammatory in streptococcal pattern recognition and that expression of the chemoattractant IL-8 by keratinocytes constitutes an important protective mechanism against streptococcal M1 protein
Coherent vs incoherent interlayer transport in layered metals
The magnetic-field, temperature, and angular dependence of the interlayer
magnetoresistance of two different quasi-two-dimensional (2D) organic
superconductors is reported. For -(BEDT-TTF)I we find a
well-resolved peak in the angle-dependent magnetoresistance at (field parallel to the layers). This clear-cut proof for the coherent
nature of the interlayer transport is absent for
''-(BEDT-TTF)SFCHCFSO. This and the non-metallic
behavior of the magnetoresistance suggest an incoherent quasiparticle motion
for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres
An automated microreactor for semi-continuous biosensor measurements.
Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments
Nano-technology and nano-toxicology
Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology
On the Meaning of the “P Factor” in Symmetrical Bifactor Models of Psychopathology: Recommendations for Future Research From the Bifactor-(S−1) Perspective
Symmetrical bifactor models are frequently applied to diverse symptoms of psychopathology to identify a general P factor. This factor is assumed to mark shared liability across all psychopathology dimensions and mental disorders. Despite their popularity, however, symmetrical bifactor models of P often yield anomalous results, including but not limited to nonsignificant or negative specific factor variances and nonsignificant or negative factor loadings. To date, these anomalies have often been treated as nuisances to be explained away. In this article, we demonstrate why these anomalies alter the substantive meaning of P such that it (a) does not reflect general liability to psychopathology and (b) differs in meaning across studies. We then describe an alternative modeling framework, the bifactor-(S−1) approach. This method avoids anomalous results, provides a framework for explaining unexpected findings in published symmetrical bifactor studies, and yields a well-defined general factor that can be compared across studies when researchers hypothesize what construct they consider “transdiagnostically meaningful” and measure it directly. We present an empirical example to illustrate these points and provide concrete recommendations to help researchers decide for or against specific variants of bifactor structure
ELECTROMYOGRAPHICAL ANALYSIS OF PLYOMETRIC EXERCISES
The purpose of this study was to evaluate integrated electromyographic (IEMG) activity of the quadriceps (Q), hamstring (H), and gastrocnemius (G) muscle groups during the performance of 10 randomly ordered plyometric (P) exercises. Subjects included 23 adults who routinely performed P. A one way Repeated Measures ANOVA indicated Q-IEMG activity was significantly different (p 0.05) were found for the G-IEMG for female subjects and those with vertical jumps less than 50 cm, or for the H muscle group. Bonferonni adjusted pairwise comparisons of main effects revealed differences in IEMG between specific P exercises
- …