351 research outputs found

    Noisy quantum Monty Hall game

    Full text link
    The influence of spontaneous emission channel and generalized Pauli channel on quantum Monty Hall Game is analysed. The scheme of Flittney and Abbott is reformulated using the formalism of density matrices. Optimal classical strategies for given quantum strategies are found. The whole presented scheme illustrates how quantum noise may change the odds of a zero-sum game.Comment: 10 pages, 3 figure

    Modelling Backward Travelling Holes in Mixed Traffic Conditions Using an Agent Based Simulation

    Get PDF
    A spatial queue model in a multi-agent simulation framework is extended by introducing a more realistic behaviour, i.e. backward travelling holes. Space corresponding to a leaving vehicle is not available immediately on the upstream end of the link. Instead, the space travels backward with a constant speed. This space is named a ‘hole’. The resulting dynamics resemble Newell’s simplified kinematic wave model. Furthermore, fundamental diagrams from homogeneous and heterogeneous traffic simulations are presented. The sensitivity of the presented approach is tested with the help of flow density contours

    Extending scientific computing system with structural quantum programming capabilities

    Full text link
    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices

    Exponential Operators, Dobinski Relations and Summability

    Get PDF
    We investigate properties of exponential operators preserving the particle number using combinatorial methods developed in order to solve the boson normal ordering problem. In particular, we apply generalized Dobinski relations and methods of multivariate Bell polynomials which enable us to understand the meaning of perturbation-like expansions of exponential operators. Such expansions, obtained as formal power series, are everywhere divergent but the Pade summation method is shown to give results which very well agree with exact solutions got for simplified quantum models of the one mode bosonic systems.Comment: Presented at XIIth Central European Workshop on Quantum Optics, Bilkent University, Ankara, Turkey, 6-10 June 2005. 4 figures, 6 pages, 10 reference

    Combinatorial Solutions to Normal Ordering of Bosons

    Full text link
    We present a combinatorial method of constructing solutions to the normal ordering of boson operators. Generalizations of standard combinatorial notions - the Stirling and Bell numbers, Bell polynomials and Dobinski relations - lead to calculational tools which allow to find explicitly normally ordered forms for a large class of operator functions.Comment: Presented at 14th Int. Colloquium on Integrable Systems, Prague, Czech Republic, 16-18 June 2005. 6 pages, 11 reference

    Numerical simulations of mixed states quantum computation

    Full text link
    We describe quantum-octave package of functions useful for simulations of quantum algorithms and protocols. Presented package allows to perform simulations with mixed states. We present numerical implementation of important quantum mechanical operations - partial trace and partial transpose. Those operations are used as building blocks of algorithms for analysis of entanglement and quantum error correction codes. Simulation of Shor's algorithm is presented as an example of package capabilities.Comment: 6 pages, 4 figures, presented at Foundations of Quantum Information, 16th-19th April 2004, Camerino, Ital

    Inclusive production of J/ψJ/\psi meson in proton-proton collisions at BNL RHIC

    Full text link
    Inclusive cross sections for J/ψJ/\psi production in proton-proton collisions were calculated in the ktk_t-factorization approach for the RHIC energy. Several mechanisms were considered, including direct color-singlet mechanism, radiative decays of χc\chi_c mesons, decays of ψ\psi', open-charm associated production of J/ψJ/\psi as well as weak decays of B mesons. Different unintegrated gluon distributions from the literature were used. We find that radiative χc\chi_c decays and direct color-singlet contributions constitute the dominant mechanism of J/ψJ/\psi production. These process cannot be consistently treated within collinear-factorization approach. The results are compared with recent RHIC data. The new precise data at small transverse momenta impose stringent constraints on UGDFs. Some UGDFs are inconsistent with the new data. The Kwieci\'nski UGDFs give the best description of the data. In order to verify the mechanism suggested here we propose J/ψJ/\psi -- jet correlation measurement and an independent measurement of χc\chi_c meson production in π+π\pi^+ \pi^- and/or K+KK^+ K^- decay channels. Finally, we address the issue of \J spin alignment.Comment: 26 pages, 20 figures, the text was slightly modified, the title was modified, more discussion was added, one figure was removed, one was adde

    Dijet correlations at RHIC, leading-order ktk_t-factorization approach versus next-to-leading order collinear approach

    Full text link
    We compare results of ktk_t-factorization approach and next-to-leading order collinear-factorization approach for dijet correlations in proton-proton collisions at RHIC energies. We discuss correlations in azimuthal angle as well as correlations in two-dimensional space of transverse momenta of two jets. Some ktk_t-factorization subprocesses are included for the first time in the literature. Different unintegrated gluon/parton distributions are used in the ktk_t-factorization approach. The results depend on UGDF/UPDF used. For collinear NLO case the situation depends significantly on whether we consider correlations of any two jets or correlations of leading jets only. In the first case the 222 \to 2 contributions associated with soft radiations summed up in the ktk_t-factorization approach dominate at ϕπ\phi \sim \pi and at equal moduli of jet transverse momenta. The collinear NLO 232 \to 3 contributions dominate over ktk_t-factorization cross section at small relative azimuthal angles as well as for asymmetric transverse momentum configurations. In the second case the NLO contributions vanish at small relative azimuthal angles and/or large jet transverse-momentum disbalance due to simple kinematical constraints. There are no such limitations for the ktk_t-factorization approach. All this makes the two approaches rather complementary. The role of several cuts is discussed and quantified.Comment: 26 pages, 17 figure

    Nonphotonic electrons at RHIC within ktk_t-factorization approach and with experimental semileptonic decay functions

    Full text link
    We discuss production of nonphotonic electrons in proton-proton scattering at RHIC. The distributions in rapidity and transverse momentum of charm and bottom quarks/antiquarks are calculated in the ktk_t-factorization approach. We use different unintegrated gluon distributions from the literature. The hadronization of heavy quarks is done by means of Peterson and Braaten et al. fragmentation functions. The semileptonic decay functions are found by fitting recent semileptonic data obtained by the CLEO and BABAR collaborations. We get good description of the data at large transverse momenta of electrons and find a missing strength concentrated at small transverse momenta of electrons. Plausible missing mechanisms are discussed.Comment: 16 pages, 11 figure
    corecore