385 research outputs found
The science case for the Next Generation AO system at W. M. Keck Observatory
The W. M. Keck Observatory is designing a new adaptive optics system providing precision AO correction in the near infrared, good correction at visible wavelengths, and multiplexed spatially resolved spectroscopy. We discuss science cases for this Next Generation AO (NGAO), and show how the system requirements were derived from these science cases. Key science drivers include asteroid companions, planets around low-mass stars, general relativistic effects around the Galactic Center black hole, nearby active galactic nuclei, and high-redshift galaxies (including galaxies lensed by intervening galaxies or clusters). The multi-object AO-corrected integral field spectrograph will be optimized for high-redshift galaxy science
Characterizing the Adaptive Optics Off-Axis Point-Spread Function - I: A Semi-Empirical Method for Use in Natural-Guide-Star Observations
Even though the technology of adaptive optics (AO) is rapidly maturing,
calibration of the resulting images remains a major challenge. The AO
point-spread function (PSF) changes quickly both in time and position on the
sky. In a typical observation the star used for guiding will be separated from
the scientific target by 10" to 30". This is sufficient separation to render
images of the guide star by themselves nearly useless in characterizing the PSF
at the off-axis target position. A semi-empirical technique is described that
improves the determination of the AO off-axis PSF. The method uses calibration
images of dense star fields to determine the change in PSF with field position.
It then uses this information to correct contemporaneous images of the guide
star to produce a PSF that is more accurate for both the target position and
the time of a scientific observation. We report on tests of the method using
natural-guide-star AO systems on the Canada-France-Hawaii Telescope and Lick
Observatory Shane Telescope, augmented by simple atmospheric computer
simulations. At 25" off-axis, predicting the PSF full width at half maximum
using only information about the guide star results in an error of 60%. Using
an image of a dense star field lowers this error to 33%, and our method, which
also folds in information about the on-axis PSF, further decreases the error to
19%.Comment: 29 pages, 9 figures, accepted for publication in the PAS
MEMS practice, from the lab to the telescope
Micro-electro-mechanical systems (MEMS) technology can provide for deformable
mirrors (DMs) with excellent performance within a favorable economy of scale.
Large MEMS-based astronomical adaptive optics (AO) systems such as the Gemini
Planet Imager are coming on-line soon. As MEMS DM end-users, we discuss our
decade of practice with the micromirrors, from inspecting and characterizing
devices to evaluating their performance in the lab. We also show MEMS wavefront
correction on-sky with the "Villages" AO system on a 1-m telescope, including
open-loop control and visible-light imaging. Our work demonstrates the maturity
of MEMS technology for astronomical adaptive optics.Comment: 14 pages, 15 figures, Invited Paper, SPIE Photonics West 201
Stellar Companions to Stars with Planets
A combination of high-resolution and wide-field imaging reveals two binary
stars and one triple star system among the sample of the first 11 stars with
planets detected by radial velocity variations. High resolution speckle or
adaptive optics (AO) data probe subarcsecond scales down to the diffraction
limit of the Keck 10-m or Lick 3-m, and direct images or AO images are
sensitive to a wider field, extending to 10" or 38", depending upon the camera.
One of the binary systems -- HD 114762 -- was not previously known to be a
spatially resolved multiple system; additional data taken with the combination
of Keck adaptive optics and NIRSPEC are used to characterize the new companion.
The second binary system -- Tau Boo -- was a known multiple with two
conflicting orbital solutions; the current data will help constrain the
discrepant estimates of periastron time and separation. Another target -- 16
Cyg B -- was a known common proper motion binary, but the current data resolve
a new third component, close to the wide companion 16 Cyg A. Both the HD 114762
and 16 Cyg B systems harbor planets in eccentric orbits, while the Tau Boo
binary contains an extremely close planet in a tidally-circularized orbit.
Although the sample is currently small, the proportion of binary systems is
comparable to that measured in the field over a similar separation range.
Incorporating the null result from another companion search project lowers the
overall fraction of planets in binary systems, but the detections in our survey
reveal that planets can form in binaries separated by less than 50 AU.Comment: 5 Tables, 16 Figures. ApJ, accepte
Technology infrastructure for citizen science
Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition, citizen science provides a valuable tool for citizens to play a more active role in sustainable development.
This book identifies and explains the role of citizen science within innovation in science and society, and as a vibrant and productive science-policy interface. The scope of this volume is global, geared towards identifying solutions and lessons to be applied across science, practice and policy. The chapters consider the role of citizen science in the context of the wider agenda of open science and open innovation, and discuss progress towards responsible research and innovation, two of the most critical aspects of science today
Characterizing the Adaptive Optics Off-Axis Point-Spread Function. II. Methods for Use in Laser Guide Star Observations
Most current astronomical adaptive optics (AO) systems rely on the
availability of a bright star to measure the distortion of the incoming
wavefront. Replacing the guide star with an artificial laser beacon alleviates
this dependency on bright stars and therefore increases sky coverage, but it
does not eliminate another serious problem for AO observations. This is the
issue of PSF variation with time and field position near the guide star. In
fact, because a natural guide star is still necessary for correction of the
low-order phase error, characterization of laser guide star (LGS) AO PSF
spatial variation is more complicated than for a natural guide star alone. We
discuss six methods for characterizing LGS AO PSF variation that can
potentially improve the determination of the PSF away from the laser spot, that
is, off-axis. Calibration images of dense star fields are used to determine the
change in PSF variation with field position. This is augmented by AO system
telemetry and simple computer simulations to determine a more accurate off-axis
PSF. We report on tests of the methods using the laser AO system on the Lick
Observatory Shane Telescope. [Abstract truncated.]Comment: 31 pages, 5 figures, accepted by PAS
GPI Spectra of HR8799 C, D, and E in H-K Bands with KLIP Forward Modeling
We demonstrate KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR8799, using PyKLIP. We report new and re-reduced spectrophotometry of HR8799 c, d, and e from H-K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting fake sources and recovering them over a range of parameters. The K1/K2 spectra for planets c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR8799e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We compare planets c, d, and e with M, L, and T-type field objects. All objects are consistent with low gravity mid-to-late L dwarfs, however, a lack of standard spectra for low gravity late L-type objects lead to poor fit for gravity. We place our results in context of atmospheric models presented in previous publications and discuss differences in the spectra of the three planets
The science case for the Next Generation AO system at W. M. Keck Observatory
The W. M. Keck Observatory is designing a new adaptive optics system providing precision AO correction in the near infrared, good correction at visible wavelengths, and multiplexed spatially resolved spectroscopy. We discuss science cases for this Next Generation AO (NGAO), and show how the system requirements were derived from these science cases. Key science drivers include asteroid companions, planets around low-mass stars, general relativistic effects around the Galactic Center black hole, nearby active galactic nuclei, and high-redshift galaxies (including galaxies lensed by intervening galaxies or clusters). The multi-object AO-corrected integral field spectrograph will be optimized for high-redshift galaxy science
- …
