7 research outputs found

    Two new Beggiatoa species inhabiting marine mangrove sediments in the Caribbean.

    Get PDF
    Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves

    Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale

    Get PDF
    Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications

    Permanent genetic resources added to Molecular Ecology Resources Database 1 december 201231 january 2013

    No full text
    This article documents the addition of 268 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alburnoidesbipunctatus, Chamaeropshumilis, Chlidoniashybrida, Cyperuspapyrus, Fusariumgraminearum, Loxigillabarbadensis, Macrobrachiumrosenbergii, Odontesthesbonariensis, Pelteobagrusvachelli, Posidoniaoceanica, Potamotrygonmotoro, Rhamdia quelen, Sarotherodonmelanotheron heudelotii, Sibiraeaangustata, Takifugurubripes, Tarentolamauritanica, Trimmatostroma sp. and Wallagoattu. These loci were cross-tested on the following species: Alburnoides fasciatus, Alburnoides kubanicus, Alburnoides maculatus, Alburnoides ohridanus, Alburnoides prespensis, Alburnoides rossicus, Alburnoides strymonicus, Alburnoides thessalicus, Alburnoides tzanevi, Carassius carassius, Fusarium asiaticum, Leucaspius delineatus, Loxigilla noctis dominica, Pelecus cultratus, Phoenix canariensis, Potamotrygon falkneri, Trachycarpus fortune and Vimba vimba

    Major shortfalls impairing knowledge and conservation of freshwater molluscs

    No full text
    corecore