292 research outputs found

    The Regulation of the CNS Innate Immune Response Is Vital for the Restoration of Tissue Homeostasis (Repair) after Acute Brain Injury: A Brief Review

    Get PDF
    Neurons and glia respond to acute injury by participating in the CNS innate immune response. This involves the recognition and clearance of “not self ” pathogens and “altered self ” apoptotic cells. Phagocytic receptors (CD14, CD36, TLR–4) clear “not self” pathogens; neurons and glia express “death signals” to initiate apoptosis in T cells.The complement opsonins C1q, C3, and iC3b facilitate the clearance of apoptotic cells by interacting with CR3 and CR4 receptors. Apoptotic cells are also cleared by the scavenger receptors CD14, Prs-R, TREM expressed by glia. Serpins also expressed by glia counter the neurotoxic effects of thrombin and other systemic proteins that gain entry to the CNS following injury. Complement pathway and T cell activation are both regulated by complement regulatory proteins expressed by glia and neurons. CD200 and CD47 are NIRegs expressed by neurons as “don't eat me” signals and they inhibit microglial activity preventing host cell attack. Neural stem cells regulate T cell activation, increase the Treg population, and suppress proinflammatory cytokine expression. Stem cells also interact with the chemoattractants C3a, C5a, SDF-1, and thrombin to promote stem cell migration into damaged tissue to support tissue homeostasis

    Is there a link between genetic defects in the complement cascade and Porphyromonas gingivalis in Alzheimer’s disease?

    Get PDF
    Defects, as determined by Genome-Wide Association Studies (GWAS), in the complement cascade of innate immunity have been suggested to play a key role in Alzheimer’s disease (AD). These defective genes encode complement sub-component 1s (C1s), complement receptor 1, complement component 9, and clusterin, a fluid-phase regulatory protein. A dysregulated complement cascade has been shown to relate to cell activation, defective complement mediated clearance and possible cognitive decline in AD patients. Porphyromonas gingivalis, a putative keystone pathogen of periodontal disease, has been reported to be associated with human AD. The inflammatory burden following an experimental oral infection in mice and putative entry of this bacterium into the brain appears to drive the formation of amyloid-beta plaques and neurofibrillary tangles with loss of cognition. P. gingivalis is a master of immune subversion in this inflammatory cascade and may establish microbial dysbiosis where it is located. Here we discuss if P. gingivalis may enhance the detrimental effects of the defective GWAS complement cascade protein genes thereby contributing to formation of hallmark lesions of AD and excessive chronic inflammation

    Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis

    Get PDF
    BACKGROUND: In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement) which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes). However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. METHODS: In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59) in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. RESULTS: Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin) and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. CONCLUSION: This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult

    Bothrops asper snake venom and its metalloproteinase BaP-1 activate the complement system. Role in leucocyte recruitment.

    Get PDF
    The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins--phospholipases and metalloproteinase--activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP-1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s) derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1) did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s) which can cause direct activation of C5a

    Neurorrestauración tras la isquemia cerebral: papel de los neurotransmisores en la neurogénesis postisquémica

    Get PDF
    Introduction. Brain ischemia and reperfusion produce alterations in the microenvironment of the parenchyma, including ATP depletion, ionic homeostasis alterations, inflammation, release of multiple cytokines and abnormal release of neurotransmitters. As a consequence, the induction of proliferation and migration of neural stem cells towards the peri-infarct region occurs. Development. The success of new neurorestorative treatments for damaged brain implies the need to know, with greater accuracy, the mechanisms in charge of regulating adult neurogenesis, both under physiological and pathological conditions. Recent evidence demonstrates that many neurotransmitters, glutamate in particular, control the subventricular zone, thus being part of the complex signalling network that influences the production of new neurons. Conclusion. Neurotransmitters provide a link between brain activity and subventricular zone neurogenesis. Therefore, a deeper knowledge of the role of neurotransmitters systems, such as glutamate and its transporters, in adult neurogenesis, may provide a valuable tool to be used as a neurorestorative therapy in this pathology.Peer Reviewe

    Complement activation in multiple sclerosis plaques: an immunohistochemical analysis

    Get PDF
    INTRODUCTION: Inflammation and complement activation are firmly implicated in the pathology of multiple sclerosis; however, the extent and nature of their involvement in specific pathological processes such as axonal damage, myelin loss and disease progression remains uncertain. This study aims to bring clarity to these questions. RESULTS: We describe a detailed immunohistochemical study to localise a strategically selected set of complement proteins, activation products and regulators in brain and spinal cord tissue of 17 patients with progressive multiple sclerosis and 16 control donors, including 9 with central nervous system disease. Active, chronic active and chronic inactive multiple sclerosis plaques (35 in total) and non-plaque areas were examined.Multiple sclerosis plaques were consistently positive for complement proteins (C3, factor B, C1q), activation products (C3b, iC3b, C4d, terminal complement complex) and regulators (factor H, C1-inhibitor, clusterin), suggesting continuing local complement synthesis, activation and regulation despite the absence of other evidence of ongoing inflammation. Complement staining was most apparent in plaque and peri-plaque but also present in normal appearing white matter and cortical areas to a greater extent than in control tissue. C1q staining was present in all plaques suggesting a dominant role for the classical pathway. Cellular staining for complement components was largely restricted to reactive astrocytes, often adjacent to clusters of microglia in close apposition to complement opsonised myelin and damaged axons. CONCLUSIONS: The findings demonstrate the ubiquity of complement involvement in multiple sclerosis, suggest a pathogenic role for complement contributing to cell, axon and myelin damage and make the case for targeting complement for multiple sclerosis monitoring and therapy

    670-nm light treatment reduces complement propagation following retinal degeneration

    Get PDF
    AIM: Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. METHODS: Sprague–Dawley (SD) rats were pretreated with 9 J/cm(2) 670-nm light for 3 minutes daily over 5 days; other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE). RESULTS: Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following 670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space following light damage, which were significantly reduced in number after 670 nm treatment. Additionally, immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment. CONCLUSIONS: Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement propagation in the degenerating retina. These findings have relevance to the cellular events of complement activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive anti-inflammatory therapy
    corecore