6,955 research outputs found

    Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers

    Get PDF
    We develop a theory for the thermodynamics of ion-containing polymer blends and diblock copolymers, taking polyethylene oxide (PEO), polystyrene and lithium salts as an example. We account for the tight binding of Li^+ ions to the PEO, the preferential solvation energy of anions in the PEO domain, the translational entropy of anions, and the ion-pair equilibrium between EO-complexed Li^+ and anion. Our theory is able to predict many features observed in experiments, particularly the systematic dependence in the effective χ parameter on the size of the anions. Furthermore, comparison with the observed linear dependence in the effective χ on salt concentration yields an upper limit for the binding constant of the ion pair

    CP violation in Higgs decays

    Full text link
    We study CP violation in fermion pair decays of Higgs boson. We idenfy some CP odd observables related to the tree level decay amplitude. We find that a few thousand Higgs boson decay events can already provide important information about CP violation. If the Higgs boson is produced, such an analysis could be carried out at the SSC, LHC and NLC.Comment: 9 pages, Revtex, UM-P-93/11, OZ-93/

    Topological Nematic States and Non-Abelian Lattice Dislocations

    Full text link
    An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall (FQH) states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translation symmetry and topological properties of these fractional Chern insulators. When a partially filled flat band has a Chern number N, it can be mapped to an N-layer quantum Hall system. We find that lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Lattice dislocations become defects with non-trivial quantum dimension, even when the FQH state being realized is by itself Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high genus surfaces in the lab even though the sample has only the disk geometry.Comment: 10 pages, 6 figures. Several new sections added in v2, including sections on even/odd effect for numerical diagnostics, analysis of domain walls, and effective topological field theor

    Hydrogen Embrittlement of Aluminum: the Crucial Role of Vacancies

    Full text link
    We report first-principles calculations which demonstrate that vacancies can combine with hydrogen impurities in bulk aluminum and play a crucial role in the embrittlement of this prototypical ductile solid. Our studies of hydrogen-induced vacancy superabundant formation and vacancy clusterization in aluminum lead to the conclusion that a large number of H atoms (up to twelve) can be trapped at a single vacancy, which over-compensates the energy cost to form the defect. In the presence of trapped H atoms, three nearest-neighbor single vacancies which normally would repel each other, aggregate to form a trivacancy on the slip plane of Al, acting as embryos for microvoids and cracks and resulting in ductile rupture along the these planes.Comment: To appear in Phys. Rev. Let

    Effective Field Theory and Projective Construction for the Z_k Parafermion Fractional Quantum Hall States

    Full text link
    The projective construction is a powerful approach to deriving the bulk and edge field theories of non-Abelian fractional quantum Hall (FQH) states and yields an understanding of non-Abelian FQH states in terms of the simpler integer quantum Hall states. Here we show how to apply the projective construction to the Z_k parafermion (Laughlin/Moore-Read/Read-Rezayi) FQH states, which occur at filling fraction \nu = k/(kM+2). This allows us to derive the bulk low energy effective field theory for these topological phases, which is found to be a Chern-Simons theory at level 1 with a U(M) \times Sp(2k) gauge field. This approach also helps us understand the non-Abelian quasiholes in terms of holes of the integer quantum Hall states.Comment: 7 page

    DsD_s Asymmetry in Photoproduction

    Full text link
    By adopting two models of strange and antistrange quark distributions inside nucleon, the light-cone meson-baryon fluctuation model and the effective chiral quark model, we calculate the Ds+−Ds−D_s^+ - D_s^- asymmetry in photoproduction in the framework of heavy-quark recombination mechanism. We find that the effect of asymmetry of strange sea to the DsD_s asymmetry is considerable and depending on the different models. Therefore, we expect that with the further study in electroproduction, e.g. at HERA and CEBAF, the experimental measurements on the Ds+−Ds−D_s^+ - D_s^- asymmetry may impose a strong restriction on the strange-antistrange distribution asymmetry models.Comment: 4 pages, talk presented by I. Caprini at the International Conference on QCD and Hadronic Physics, June 16-20 2005, Beijin

    Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential

    Full text link
    Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.Comment: 7 pages, 3 figure

    Towards Bose-Einstein Condensation of Electron Pairs: Role of Schwinger Bosons

    Full text link
    It can be shown that the bosonic degree of freedom of the tightly bound on-site electron pairs could be separated as Schwinger bosons. This is implemented by projecting the whole Hilbert space into the Hilbert subspace spanned by states of two kinds of Schwinger bosons (to be called binon and vacanon) subject to a constraint that these two kinds of bosonic quasiparticles cannot occupy the same site. We argue that a binon is actually a kind of quantum fluctuations of electron pairs, and a vacanon corresponds to a vacant state. These two bosonic quasiparticles may be responsible for the Bose-Einstein condensation (BEC) of the system associated with electron pairs. These concepts are also applied to the attractive Hubbard model with strong coupling, showing that it is quite useful. The relevance of the present arguments to the existing theories associated with the BEC of electron pairs is briefly commented.Comment: Revtex, one figur
    • …
    corecore