8,680 research outputs found
Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers
We develop a theory for the thermodynamics of ion-containing polymer blends and diblock copolymers, taking polyethylene oxide (PEO), polystyrene and lithium salts as an example. We account for the tight binding of Li^+ ions to the PEO, the preferential solvation energy of anions in the PEO domain, the translational entropy of anions, and the ion-pair equilibrium between EO-complexed Li^+ and anion. Our theory is able to predict many features observed in experiments, particularly the systematic dependence in the effective χ parameter on the size of the anions. Furthermore, comparison with the observed linear dependence in the effective χ on salt concentration yields an upper limit for the binding constant of the ion pair
CP violation in Higgs decays
We study CP violation in fermion pair decays of Higgs boson. We idenfy some
CP odd observables related to the tree level decay amplitude. We find that a
few thousand Higgs boson decay events can already provide important information
about CP violation. If the Higgs boson is produced, such an analysis could be
carried out at the SSC, LHC and NLC.Comment: 9 pages, Revtex, UM-P-93/11, OZ-93/
Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential
Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P.
Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial
Brownian motors to the case of an asymmetric potential. It is found that some
transport phenomena appear in the presence of an asymmetric potential. Within
tailored parameter regimes, there exists two optimal values of the load at
which the mean velocity takes its maximum, which means that a load can
facilitate the transport in the two parameter regimes. In addition, the
phenomenon of multiple current reversals can be observed when the load is
increased.Comment: 7 pages, 3 figure
Hydrogen Embrittlement of Aluminum: the Crucial Role of Vacancies
We report first-principles calculations which demonstrate that vacancies can
combine with hydrogen impurities in bulk aluminum and play a crucial role in
the embrittlement of this prototypical ductile solid. Our studies of
hydrogen-induced vacancy superabundant formation and vacancy clusterization in
aluminum lead to the conclusion that a large number of H atoms (up to twelve)
can be trapped at a single vacancy, which over-compensates the energy cost to
form the defect. In the presence of trapped H atoms, three nearest-neighbor
single vacancies which normally would repel each other, aggregate to form a
trivacancy on the slip plane of Al, acting as embryos for microvoids and cracks
and resulting in ductile rupture along the these planes.Comment: To appear in Phys. Rev. Let
Towards Bose-Einstein Condensation of Electron Pairs: Role of Schwinger Bosons
It can be shown that the bosonic degree of freedom of the tightly bound
on-site electron pairs could be separated as Schwinger bosons. This is
implemented by projecting the whole Hilbert space into the Hilbert subspace
spanned by states of two kinds of Schwinger bosons (to be called binon and
vacanon) subject to a constraint that these two kinds of bosonic quasiparticles
cannot occupy the same site. We argue that a binon is actually a kind of
quantum fluctuations of electron pairs, and a vacanon corresponds to a vacant
state. These two bosonic quasiparticles may be responsible for the
Bose-Einstein condensation (BEC) of the system associated with electron pairs.
These concepts are also applied to the attractive Hubbard model with strong
coupling, showing that it is quite useful. The relevance of the present
arguments to the existing theories associated with the BEC of electron pairs is
briefly commented.Comment: Revtex, one figur
Quantum Phase Transition in Finite-Size Lipkin-Meshkov-Glick Model
Lipkin model of arbitrary particle-number N is studied in terms of exact
differential-operator representation of spin-operators from which we obtain the
low-lying energy spectrum with the instanton method of quantum tunneling. Our
new observation is that the well known quantum phase transition can also occur
in the finite-N model only if N is an odd-number. We furthermore demonstrate a
new type of quantum phase transition characterized by level-crossing which is
induced by the geometric phase interference and is marvelously periodic with
respect to the coupling parameter. Finally the conventional quantum phase
transition is understood intuitively from the tunneling formulation in the
thermodynamic limit.Comment: 4 figure
Lattice susceptibility for 2D Hubbard Model within dual fermion method
In this paper, we present details of the dual fermion (DF) method to study
the non-local correction to single site DMFT. The DMFT two-particle Green's
function is calculated using continuous time quantum monte carlo (CT-QMC)
method. The momentum dependence of the vertex function is analyzed and its
renormalization based on the Bethe-Salpeter equation is performed in
particle-hole channel. We found a magnetic instability in both the dual and the
lattice fermions. The lattice fermion susceptibility is calculated at finite
temperature in this method and also in another recently proposed method, namely
dynamical vertex approximation (DA). The comparison between these two
methods are presented in both weak and strong coupling region. Compared to the
susceptibility from quantum monte carlo (QMC) simulation, both of them gave
satisfied results.Comment: 10 pages, 11 figure
Signatures of Non-commutative QED at Photon Colliders
In this paper we study non-commutative (NC) QED signatures at photon
colliders through pair production of charged leptons and
charged scalars . The NC corrections for the fermion pair production
can be easily obtained since NC QED with fermions has been extensively studied
in the literature. NC QED with scalars is less studied. To obtain the cross
section for productions, we first investigate the structure of NC QED
with scalars, and then study the corrections due to the NC geometry to the
ordinary QED cross sections. Finally by folding in the photon spectra for a
collider with laser back-scattered photons from the
machine, we obtain 95% CL lower bound on the NC scale using the above two
processes. We find that, with , and TeV and
integrated luminosity , the NC scale up to 0.7, 1.2, and 1.6
TeV can be probed, respectively, while, for monochromatic photon beams, these
numbers become 1.1, 1.7, 2.6 TeV, respectively.Comment: 16 pages, 7 figure
Analysis of the form-factors with light-cone QCD sum rules
In this article, we study the , ,
form-factors with the light-cone QCD sum rules, where the -meson light-cone
distribution amplitudes are used. In calculations, we observe that the
line-shapes of the -meson light-cone distribution amplitude
have significant impacts on the values of the form-factors, and expect to
obtain severe constraints on the parameters of the -meson light-cone
distribution amplitudes from the experimental data in the future.Comment: 19 pages, 6 figures, slight revisio
- …
