98 research outputs found

    Ancient human mitochondrial genomes from Bronze Age Bulgaria: new insights into the genetic history of Thracians

    Get PDF
    Abstract One of the best documented Indo-European civilizations that inhabited Bulgaria is the Thracians, who lasted for more than five millennia and whose origin and relationships with other past and present-day populations are debated among researchers. Here we report 25 new complete mitochondrial genomes of ancient individuals coming from three necropolises located in different regions of Bulgaria – Shekerdja mogila, Gabrova mogila and Bereketska mogila – dated to II-III millennium BC. The identified mtDNA haplogroup composition reflects the mitochondrial variability of Western Eurasia. In particular, within the ancient Eurasian genetic landscape, Thracians locate in an intermediate position between Early Neolithic farmers and Late Neolithic-Bronze Age steppe pastoralists, supporting the scenario that the Balkan region has been a link between Eastern Europe and the Mediterranean since the prehistoric time. Spatial Principal Component Analysis (sPCA) performed on Thracian and modern mtDNA sequences, confirms the pattern highlighted on ancient populations, overall indicating that the maternal gene pool of Thracians reflects their central geographical position at the gateway of Europe

    Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment)

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 273 (2007): 383-393, doi:10.1007/s10967-007-6898-4.A reference material designed for the determination of anthropogenic and natural radionuclides in sediment, IAEA-384 (Fangataufa Lagoon sediment), is described and the results of certification are presented. The material has been certified for 8 radionuclides (40K, 60Co, 155Eu, 230Th, 238U, 238Pu, 239+240Pu and 241Am). Information values are given for 12 radionuclides (90Sr, 137Cs, 210Pb (210Po), 226Ra, 228Ra, 232Th, 234U, 235U, 239Pu, 240Pu and 241Pu). Less reported radionuclides include 228Th, 236U, 239Np and 242Pu. The reference material may be used for quality management of radioanalytical laboratories engaged in the analysis of radionuclides in the environment, as well as for the development and validation of analytical methods and for training purposes. The material is available from IAEA in 100 g units

    NGS Nominated CELA1, HSPG2, and KCNK5 as Candidate Genes for Predisposition to Balkan Endemic Nephropathy

    Get PDF
    Balkan endemic nephropathy (BEN) is a familial chronic tubulointerstitial disease with insidious onset and slow progression leading to terminal renal failure. The results of molecular biological investigations propose that BEN is a multifactorial disease with genetic predisposition to environmental risk agents. Exome sequencing of 22 000 genes with Illumina Nextera Exome Enrichment Kit was performed on 22 DNA samples (11 Bulgarian patients and 11 Serbian patients). Software analysis was performed via NextGene, Provean, and PolyPhen. The frequency of all annotated genetic variants with deleterious/damaging effect was compared with those of European populations. Then we focused on nonannotated variants (with no data available about them and not found in healthy Bulgarian controls). There is no statistically significant difference between annotated variants in BEN patients and European populations. From nonannotated variants with more than 40% frequency in both patients' groups, we nominated 3 genes with possible deleterious/damaging variants-CELA1, HSPG2, and KCNK5. Mutant genes (CELA1, HSPG2, and KCNK5) in BEN patients encode proteins involved in basement membrane/extracellular matrix and vascular tone, tightly connected to process of angiogenesis. We suggest that an abnormal process of angiogenesis plays a key role in the molecular pathogenesis of BEN

    Combined Experimental and Computational Studies on the Nature of Aromatic C−H Activation by Octahedral Ruthenium(II) Complexes: Evidence for σ-Bond Metathesis from Hammett Studies

    Full text link
    Octahedral ruthenium complexes of the type TpRu(L)(NCMe)R [Tp = hydridotris(pyrazolyl)borate; R = alkyl or aryl; L = CO or PMe3] have been shown previously to initiate the C-H activation of aromatic substrates. In order to probe the nature of the C-H activation step, reaction rates have been theoretically obtained for the conversion of TpRu(L)(η2-C, C-C6H5X)Me to TpRu(L)(P-C6H4X) and CH4 where X is varied among Br, Cl, CN, F, H, NH2, NO 2, and OMe. A linear Hammett correlation is calculated with a positive p value of 2.6 for L = CO and 3.2 for L = PMe3. Calculated kinetic data for the aromatic C-H activations indicate that an electrophilic aromatic substitution mechanism is unlikely. While experiments cannot fully replicate the entire range of calculated Hammett plots, reactivity trends are consistent with the calculations that suggest activation barriers to overall metal-mediated arene C-H bond cleavage are reduced by the presence of electron-withdrawing groups in the position para to the site of activation. Previous mechanistic studies, as well as the structure and imaginary vibrational modes of the present transition states, validate that the C-H activation for this family of TpRu complexes occurs through a σ-bond metathesis-type pathway. © 2007 American Chemical Society
    corecore